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ABSTRACT

Orthogonality and rotation invariance are important feature prop-
erties in digital signal processing. Orthogonality enables a target
to be represented by a compact number of features, while rotation
invariance results in unique features for a target with different ori-
entations. The orthogonal, rotation-invariant moments (ORIMs),
such as Zernike, Pseudo-Zernike, and Orthogonal Fourier-Melling
moments, are defined in continuous space. These ORIMs have
been digitized and have been demonstrated effectively for some
digital imagery applications. However, digitization compromises
the orthogonality of the moments, and hence, reduces their pre-
cision. Therefore, digital ORIMs are incapable of representing
the fine details of images. In this paper, we propose a numerical
optimization technique to improve the orthogonality of the digital
ORIMs. Simulation results show that our optimized digital ORIMs
can be used to reproduce subtle details of images.

1. INTRODUCTION

Moments are widely used for signal processing because they cap-
ture the global information of the signal. Among various moments
that have been proposed, orthogonal, rotation-invariant moments
(ORIMs) have received special attention. The most important type
of ORIMs, Zernike moments, were proposed by F. Zernike as
the eigenfunction of certain second-order partial differential equa-
tions [1]. Bhatia and Wolf found that Zernike moments can also be
derived from Legendre polynomials with certain constraints. Us-
ing the same technology in different settings, they obtained Pseudo-
Zernike moments [2]. Recently, Sheng and Shen proposed Orthog-
onal Fourier-Mellin moments (OFMMs) [3].

Zernike moments, Pseudo-Zernike moments, and OFMMs are
developed in continuous space. They have complex coefficients
and are defined over the unit disk, i.e., 0 ≤ ρ ≤ 1, 0 ≤ θ < 2π.
The magnitude of the moments is invariant to the rotation of the
signal, while the orientation information is conveyed only by the
phase. The rotation invariance of the magnitude is useful in pattern
recognition applications because it eliminates the difficulty in cal-
culating the orientation of the targets. The coefficients of ORIMs
are orthogonal to each other, and this orthogonality has several
important consequences. First, the moments are non-redundant,
and thus fewer moments are needed to represent a signal than non-
orthogonal moments. Second, signal reconstruction is much eas-
ier for orthogonal moments. Finally, the more moments that are
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used, the better the reconstruction will be; and, consequently, ev-
ery signal can be accurately reconstructed by using a set (possibly
infinite) of these moments.

For applications in discrete space, the ORIMs are digitized
both geometrically and numerically. Specifically, a set of pixels is
selected to resemble the unit disk. For each moment, a coefficient
is chosen for each pixel, although originally, different locations
within a pixel usually have different coefficients. The direct meth-
ods determine the coefficients for a pixel by direct sampling of
the ORIMs at one or several locations. For example, the simplest
direct method uses ORIM coefficients at the pixel center for that
pixel.

The digital ORIMs resulting from simple direct methods have
been shown to be effective in some digital image processing ap-
plications, such as image indexing [4], patten recognition [5], tar-
get orientation estimation, and image compression, and have been
proven to be noise resilient [6, 7]. However, the orthogonality of
ORIMs is compromised during the digitization process, and hence,
limits their precision. For example, if a certain number of moments
are used to reconstruct an image, the inclusion of additional mo-
ments may degrade the result. Therefore, the digital ORIMs from
direct methods cannot represent the fine details of an image, and
they cannot be used to distinguish images with subtle difference.

Liao and Pawlak suggested several reasons for the loss of ac-
curacy of digital Zernike moments derived from simplest direct
methods [8]. First, the total area of the chosen pixels is different
from that of the unit disk (geometric error). Second, the coeffi-
cients sampled at the pixel center are different from the average
coefficients in that pixel area (numerical error). They proposed
the use of a circle smaller than the inscribed circle of the image
to select pixels, and the use of numerical integration rather than
one-point sampling.

In our investigation, we found that no matter what size of cir-
cle is used, nor what type of numerical integration formulas are
used, the digital ORIMs derived from direct methods are different
from those in continuous space, and this difference prevents the
digital ORIMs from accurately reconstructing the signal.

In this paper, we use the coefficients derived from direct meth-
ods as an initial estimate, and we then use numerical optimization
to improve the orthogonality, while preserving the rotation invari-
ance. We use the limited-memory BFGS algorithm [9] for opti-
mization because of its fast convergence rate and low computa-
tional complexity. Experiments show that our optimized digital
ORIMs have better orthogonality, and hence, better image recon-
struction performance.
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2. ORTHOGONAL ROTATION-INVARIANT MOMENTS
IN CONTINUOUS SPACE

The ORIMs are developed in continuous space over the unit disk,
D, i.e., D = {(ρ, θ) | 0 ≤ ρ ≤ 1, 0 ≤ θ < 2π}. Bhatia and
Wolf [2] proved that the coefficient of every ORIM must be the
product of a certain polynomial and a phase component, i.e.,

vnm(ρ, θ) = rnm(ρ)pnm(θ), (1)

where m is an integer, pnm(θ) = ejmθ , and rnm(ρ) is a polyno-
mial in ρ of degree n, which contains no power of ρ lower than
|m|. n is the “order” and m is the “repetition” of the moment.

The coefficients of the ORIMs are orthogonal to each other,
i.e.,∫ ∫

(ρ,θ)∈D

v∗

nm(ρ, θ)vpq(ρ, θ)ρdρdθ =
π

n + 1
δnpδmq, (2)

where δnp = 1 if n = p, and 0 otherwise.
The moment of order n, with repetition m, for a continuous

2-D signal, f(ρ, θ), that vanishes outside the unit disk is

anm =
n + 1

π

∫ ∫
(ρ,θ)∈D

f(ρ, θ)v∗

nm(ρ, θ)ρdρdθ. (3)

Due to the orthogonality of the coefficients, vnm(ρ, θ), f(ρ, θ)
can be easily reconstructed by

f̂(ρ, θ) =
∑

n

∑
m

anmvnm(ρ, θ). (4)

The more moments that are used in the reconstruction, the closer
f̂(ρ, θ) becomes to f(ρ, θ). Furthermore, every signal can be ac-
curately reconstructed by a set of (possibly infinite) moments.

Rotating the signal, f(ρ, θ), does not change the magnitude of
the ORIMs. For example, let the rotated signal be f(ρ, θ − φ),
then the corresponding moments will be aφ

nm = anme−jmφ.
Zernike moments, Pseudo-Zernike moments, and OFMMs dif-

fer in the polynomials, rnm(ρ), and in the constraints between n
and m. In particular, the polynomials of OFMMs are the same as
those of Pseudo-Zernike moments when m = 0. Refer to [1, 2, 3]
for detailed formulas.

3. DIGITAL ORIMS BY DIRECT METHODS

The digital ORIMs derived from direct methods are produced by
digitizing ORIMs both geometrically and numerically. To illus-
trate, the unit disk, D = {(ρ, θ) | 0 ≤ ρ ≤ 1, 0 ≤ θ < 2π},
is digitized to D̂, which consists of a set of pixels. For each mo-
ment, the coefficient values, vnm(ρ, θ), over the area of a pixel are
quantized into one vnm,ij . This procedure is illustrated in Fig. 1.

The simplest direct method works as follows. Consider an
image of M × M pixels. The coordinates of the pixel center,
(xi, yj), can be calculated by assuming that the image is sampled
from the square within [−1, 1]2. Definition domain D̂ is chosen to
contain the pixels with centers falling on the unit circle, i.e.,

D̂ =
{

(i, j)|
√

x2
i + y2

j ≤ γ
}

, (5)

where γ = 1 is the radius of the circle, and (i, j) represents the
pixel at the ith row and the jth column. The coefficients are sim-
ply the ORIM values at the pixel centers. Specifically, vnm,ij =
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Fig. 1. Direct methods for converting ORIMs from continuous
to discrete space. Each square in (a) represents a pixel, and each
black dot represents the center of a pixel. The circle is the original
definition domain, D, and is digitized into the shaded pixels, D̂.
The coefficients for each pixel are derived by sampling ORIMs at
one or multiple locations within the pixel. (b), (c), (d), and (e)
are the sampling locations for formulas 1-D, 5-D(I), 5-D(II), and
13-D(I & II), respectively.

vnm(xi, yj). Since a single sampling is used to calculate the coef-
ficients, this method is referred to as the “1-D” formula.

The moments and signal reconstruction in discrete space are

anm =
n + 1

π

∑
(i,j)∈D̂

fij v∗

nm,ij , (6)

and
f̂ij =

∑
n

∑
m

anm vnm,ij . (7)

It can be seen from Figs. 1 and 2 that the selected pixels in D̂
cannot exactly match the unit disk, D, and that the ORIM coef-
ficients at the pixel center are usually different from the average
coefficients over the entire pixel area. Hence, geometric error and
numerical error are expected.

Liao and Pawlak [8] proposed improvements to the accuracy
of Zernike moments by using a smaller circle for determining D̂,
and multiple point numerical integration formulas. The proposed
radius for the circle is

γ =
√

1 − 1/M − 0.0001. (8)

The proposed formulas are 5-D(I), 5-D(II), 13-D(I), and 13-D(II).
The sampling locations of these formulas are illustrated in Fig. 1,
with details provided in [8].

In our work, we show that finding the best radius for D̂ is de-
termined by the numerical formula adopted, and should be reduced
for moments of higher order. From Fig. 2 we can see that 1) the
polynomial of Zernike moments approaches infinity steeply when
ρ is greater than 1, and 2) the polynomial changes more sharply
when ρ approaches 1, or when n is larger. Because the reconstruc-
tion error is the summation of the geometric and the numerical
errors, the best radius should be a tradeoff between the two. If n is
small, the numerical error is trivial when the radius is smaller than
1, and the best radius would be close to (but less than) 1, since
such radii would minimize the geometric error. In contrast, when
n is large, the numerical error is dominant for pixels close to the
unit circle, and reducing the radius will yield better performance.
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Fig. 2. Polynomials (rnm(ρ)) of Zernike moments for m=0 and
n=24, 32, 40, displayed for (a) 0 ≤ ρ ≤ 1, and (b) around ρ = 1.

In summary, the best radius is always less than 1, and is smaller
when n is larger. Experimental results in Section 5 will verify our
claim. The magnitudes of Pseudo-Zernike moments and OFMMs
have the same properties as Zernike moments in 1), and less so
in 2), but the best radii have similar properties.

Applying numerical integration formulas with more sampling
points will reduce the numerical error. However, to avoid points
falling outside the unit disk, the radius must be reduced, which
consequently increases the geometric error. Hence, there is a limit
to the accuracy of digital ORIMs derived from direct methods.
As we will illustrate in our experiments, this limit is significant
enough to limit the reconstruction accuracy.

4. DIGITAL ORIMS BY NUMERICAL OPTIMIZATION

Because the advantages of ORIMs come from the orthogonality
and rotation invariance, the digital ORIMs do not have to be strictly
similar to those in continuous space. In this paper, we use numeri-
cal optimization to improve the orthogonality of the digital ORIMs
derived from direct methods, while preserving their rotation invari-
ance.

For ease of discussion, we arrange the image and ORIMs into
vector or matrix forms. Let the number of pixels in D̂ be N . A
column vector, F = {Fk|1 ≤ k ≤ N}, is used to represent
the digital imagery, {fij |(i, j) ∈ D̂}. Let the number of moments
be L. A matrix, P, of size L×N , is used to present the phase of the
coefficients such that each row corresponds to a moment, and each
column corresponds to a pixel. For example, Plk = pnm,ij . A
matrix, R, is constructed in the same format, but with normalized
values,

Rlk =
√

(n + 1)/π rnm,ij . (9)

The coefficients are

Vlk = RlkPlk, 1 ≤ l ≤ L, 1 ≤ k ≤ N. (10)

If we define operation “◦” to be the dot product between matrices,
then

V = R ◦ P. (11)

If the coefficients are orthonormal, then V
∗
V

T = I. Thus,
κ(V) = ||V∗

V
T − I||2F is a measure of the orthogonality of V.

Here, || · ||F is the Frobenius norm, i.e.,

κ(V) = ||V∗
V

T − I||2F =

L∑
i=1

L∑
j=1

∣∣∣∣∣
N∑

k=1

V ∗

ikVjk − δij

∣∣∣∣∣
2

. (12)
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Fig. 3. The normalized reconstruction error, ε(V)/N , for digital
ORIMs with different radii from (a) 5-D(II) formula, and (b) 13-
D(I) formula.

The moments are then

A = V
∗F. (13)

The reconstructed image is

F̂ = V
T A = V

T
V

∗F, (14)

where V
∗ is the complex conjugate, and V

T is the transpose of
matrix V. The residue image is

F̂ − F = (VT
V

∗ − I)F. (15)

Define the reconstruction error for image F as

ε(F ) =

N∑
k=1

|F̂k − Fk|
2 /

N∑
k=1

F 2
k . (16)

From Eqns. (15) and (16), we can see that the reconstruction error
is determined both by (VT

V
∗−I) and the original image, F . For

a given V, if F happens to be an eigenvector of (VT
V

∗ − I), the
reconstruction error is large. On the contrary, if F falls in the null
space of (VT

V
∗ − I), the reconstruction error is zero. However,

if the Frobenius norm of (VT
V

∗ − I) is small, the reconstruction
error will be small no matter what F is.

Define
ε(V) = ||VT

V
∗ − I||2F . (17)

Because ε(V) affects the reconstruction for all images, we use
it as the measure of the reconstruction accuracy of V. It can be
proven that ε(V) and κ(V) are different only by a constant quan-
tity. Specifically,

ε(V) = κ(V) + N − L, if L ≤ N. (18)

(Due to page limitations, the proof of Eqn. (18) is omitted.) Hence,
improving the reconstruction accuracy will improve the orthogo-
nality, and vice versa. Because ε(V) is directly related to the im-
age reconstruction accuracy, it is chosen as the objective for opti-
mization.

The proposed optimization problem is a large-scale problem.
As an example, let M = 24, and let the radius be chosen ac-
cording to Eqn. (8). There would then be N = 432 pixels in
D̂. If n = 40, there would be L = 861 moments. Optimization
of 432 × 861 = 371, 952 variables is a computationally complex
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Fig. 4. The Reconstructed images. Top row from left to right: the
original image, the best reconstruction (at n = 33) for 5-D(II),
and the reconstruction (for any n ≥ 33) by the optimized method,
respectively; second to fourth row: the reconstruction for different
n’s by 1-D, 5-D(II), and the optimized method, respectively. From
left to right, the images are reconstructed from moments up to n =
15, 20, 25, 30, 35, and 40, respectively.

task. Accordingly, we chose the limited-memory BFGS (L-BFGS)
algorithm, which is inexpensive to implement and fairly robust, but
converges rapidly [9].

To avoid the complexity of computing complex numbers in the
optimization procedure, we choose to optimize the polynomials, R
rather than the coefficients, V. The polynomials, R, and phases,
P, calculated by the direct methods are close to the optimization
solution, and are used as initial conditions.

To speed up the optimization, L-BFGS requires that the deriva-
tive of ε(V) be calculated with respect to R, which can be proven
(proof omitted due to page limitations) to be

G = 4�
{
V

∗
(
V

T
V

∗ − I
)
◦ P

}
, (19)

where �{·} is the real part of the variable.

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

In the experiments conducted, Zernike moments up to n = 40
were used. The size of the testing imagery was 24× 24, i.e., M =
24. For ease of comparison, the radius as defined in Eqn. (8) was
used.

Fig. 3 shows the reconstruction error as defined in Eqn. (17),
obtained with different radii. Because different radii involve differ-
ent numbers of pixels in the computation, the reconstruction error
is normalized by the number of pixels. Specifically, the curves are
ε(V)/N . At radius γ = 0.9665, all sampling points for 5-D(II)
are within the unit disk (and γ = 0.9223 for 13-D(I)). The results
show that at these radii, reconstruction accuracies are among the
best. However, close inspection reveals that at lower n’s, larger
radii yield better results.

Fig. 4 shows the reconstructed images obtained by coefficients
from 1-D, 5-D(II) (the best formula from [8]), and by our opti-
mized method. The test image was chosen to be a character with
uniform background and foreground intensities for easy inspec-
tion. From Fig. 4, we can see that the reconstructed images from
1-D and 5-D(II) have significant distortion. On the other hand, the
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Fig. 5. (a) The reconstruction accuracy of V, and (b) the recon-
struction error for the test image in Fig. 4.

reconstruction with our optimized coefficients is nearly identical
to the original when n is larger than 33.

Fig. 5 compares the reconstruction accuracy of V as defined
in Eqn. (17), and the reconstruction error for test images as defined
in Eqn. (16), for different formulas. From the figure, we can see
that our optimized coefficients yield the best performance. Note
also that for our optimized coefficients, the inclusion of more mo-
ments produces better reconstruction. In fact, when n ≥ 30, the
reconstruction error is almost zero.

Our experiments also include Pseudo-Zernike moments and
OFMMs at different radii and on other images. The results also
reveal that our optimized ORIMs are superior to the digital ORIMs
from direct methods. However, these results are not be included
due to space limitations.
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