
TRACKING ALGORITHM USING BACKGROUND-FOREGROUND MOTION MODELS
AND MULTIPLE CUES

Jie Shao1, Shaohua Kevin Zhou2 and Rama Chellappa1

1Center for Automation Research and Department of ECE
University of Maryland, College Park, MD 20742

{shaojie,rama}@cfar.umd.edu
2Integrated Data System Department, Siemens Corporate Research

755 College Road East, Princeton, NJ 08540
{kzhou}@scr.siemens.com

ABSTRACT

We present a stochastic tracking algorithm for surveillance videos
where targets are dim and of low resolution. Our tracker is mainly
based on the particle filter algorithm. Two important novel fea-
tures of the tracker include: A motion model consisting of both
background and foreground motion parameters is built. Multiple
cues are adaptively integrated in a system observation model when
estimating the likelihood functions. Based on these features, the
accuracy and robustness of the tracker has been improved, which
is very important for surveillance problems. We present the results
of applying the proposed algorithm to many videos.

1. INTRODUCTION

Visual tracking has many applications including robotics, video
surveillance and image sequence analysis. Tracking small dim
objects in video is an important and challenging research topic.
However, developing an algorithm for tracking small dim objects
is still an open problem. In the literature, many algorithms are
available for precise object tracking in real time. Most of these al-
gorithms work very well on large objects, but less so for small ob-
jects, which is important in surveillance applications, where there
may only be tens of pixels on the target.

Many approaches have been suggested for addressing surveil-
lance tracking problems. Four approaches, namely background
subtraction [4], foreground tracking, [5], motion encoded tracking
[1], and appearance-based tracking [10] have been taken. Each of
these algorithms has its own emphasis on solving specific tracking
problem; as a result, they all fail in many situations. For example,
both intensity-based and edge-based trackers will be distracted by
other objects or background clutters of similar intensity. Thus no
single cue can perform efficiently in all kinds of situation. An-
other point is that usually in the non-static camera case, there exist
two different movements caused by different sources. We sepa-
rate them as background motion and foreground motion, which
can be specified by two different sets of parameters. We present a
new statistical method for tracking objects in surveillance videos,
which has two features in the system model. 1) A dynamic motion
model: we define different parameters for characterizing the back-
ground and foreground motions. 2) An observation model: we use
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a fused model with multiple cues. The former improves the track-
ing accuracy of the system, while the latter yields a higher system
robustness.

The dynamic model in the system is a time series state space
model parameterized by a tracking motion vector, denoted by θ.
To describe the two types of motions, the motion vector θ for the
entire system consists of two subsets of parameters for the back-
ground movement and foreground motions[6].

θ = {θF ; θB} = {αF , dxF , dyF , sF ; αB , dxB , dyB , sB} (1)

where θB represents the background parameters, θF represents
the foreground parameters. Image rotation angle αB , displace-
ment dxB , dyB and scale sB are four parameters in θB describ-
ing the background changes caused by the moving camera, while
αF ,dxF , dyF ,sF in θF represent the movement of the foreground
object motion. In most of surveillance scenarios when objects only
occupy a small number of pixels, the displacements of the objects
{dxF , dyF } are good enough to describe the movements of tar-
gets.

The observation model fuses motion and intensity cues. Inten-
sity information classifies objects from background due to differ-
ent intensity values, while motion information helps to discrimi-
nate moving objects from relatively still background. When used
separately, neither of them is robust enough to deal with all kinds
of situations. Therefore in the proposed algorithm, the two cues
are used together as measurements.

With dynamic and observation models defined, we use the par-
ticle filter as our basic tracking filter. This is under the realization
that tracking targets in real world requires nonlinear models and
non-Gaussian noise models, and particle filters are particularly ap-
propriate. Since the system simultaneously estimates both back-
ground and foreground motion parameters using a single dynamic
model, the efficiency of the algorithm is increased for: 1) segment-
ing background and foreground objects; 2) obtaining both motion
information and intensity information from background motion
vector θB ; and 3) tracking the foreground target based on esti-
mated foreground motion vector θF .

The rest of the paper is organized as follows. After a brief
discussion of the proposed tracking algorithm in Section 2, we de-
scribe the tracking model that includes background and foreground
models. The tracking observation model with multiple cues is in-
troduced in Section 3. Experimental results and discussions are
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presented in Section 4. Finally, in Section 5 we present the con-
cluding remarks.

2. BACKGROUND-FOREGROUND TRACKING USING
PARTICLE FILTER

2.1. Visual Tracking by Particle Filtering

The particle filter was originally proposed as a probability propa-
gation model in [3] in the signal processing literature and has been
used to solve many vision tasks [5]with a popular name as the con-
densation algorithm. The problem of tracking can be formulated as
maximizing p(θ|Yt−1) ∝ L(Yt|θt)

∫
p(θt|θt−1)p(θt−1|Y1:t−1)dθt−1.

The particle filter approximates the current posterior distribution
p(θt|Y1:t) by a set of weighted particles St = {θ(j)

t , ω
(j)
t }J

j=1. In
each time instant, the weights are updated with the likelihood of
the new observation combined with the former weights. Then, a
resampling step is added to eliminate particles with lower weights.

2.2. Dynamic Model Components of Particle Filter

As already discussed in section 1, the motion in a video frame is
caused by two different sources. One is due to the moving object
itself, the other is due to the moving camera. Therefore, we define
the state motion vector θ in (1), which is more appropriate to this
kind of tracking scenario. Accordingly, the posterior distribution
becomes a joint distribution of the background and the foreground,
which is p(θB

t ; θF
t |Y1:t). Our goal is to find θ that maximizes

the posterior probability, which require the solving of θB
t and θF

t

simultaneously. We present an iterative algorithm to find a local
solution by iteratively improving θ.

2.3. Iterative Optimization for Background Foreground Mo-
tion Estimation

Expectation-Maximization [2] is a technique for obtaining a maxi-
mum likelihood estimate (MLE) for a family of model parameters
given some observed data. Though the EM algorithm is not nec-
essary in our settings, the general idea that a local optimal solu-
tion can be achieved by iteratively optimizing the target function
is adopted. Obviously, we have two different sets in the state vec-
tor: θt = {θB

t , θF
t }, and the goal is to find θt that maximizes the

posterior probability max argθt
P (θt|Y1:t, θt−1) [8].

During each optimization stage, we first fix θF
t by using the

previous estimated value θF
t−1, estimate θB

t , then estimate θF
t again.

Multiple iterations may be required before proceeding to the next
image, but based on experimental results, we have found that a sin-
gle iteration may be sufficient. Using this assumption, time recur-
siveness and Markov properties, the relation between background
and foreground distributions can be written as

p(θF
t |θ̂B

t , Y1:t, θt−1) ∝ p(Yt|θF
t , θ̂B

t )p(θF
t |Y1:t−1, θF

t−1) (2)

p(θB
t |θ̂F

t , Y1:t, θt−1) ∝ p(Yt|θB
t , θ̂F

t )p(θB
t |Y1:t−1, θB

t−1) (3)

2.4. Background Motion Model

How to find what has changed between two successive frames? As
described in [6] , we include the background motion vectors into
the system state vector which provide the necessary parameters for
stabilization. Let X = (x, y)T , dXt = (dx, dy)T . We then have
a motion formula:

Xt = s

(
cos α sin α
− sin α cos α

)
Xt−1 + dXt (4)

where s is the scale factor, α is the rotation angle between the two
frames, dXt is the translation measured in the image coordinates
at time t. According to the transform equation, four parameters
(αB

t , dxB
t , dyB

t , sB
t ) are used to describe the motion of the back-

ground between frame t − 1 and t, where αB
t is the rotation angle,

dxB
t and dyB

t represent the translation parameters, and sB
t is the

scale factor. These parameters characterize the motion of the cam-
era. The state transition is then approximated by using a first-order
Markov chain and a mixture Gaussian noise model. One compo-
nent of noise is the zero-mean Gaussian distribution, denoted as
µt, accounting for sensor noise, digitization noise etc; the other is
a non-zero-mean Gaussian distribution, denoted as νt, caused by
the camera motion. The background motion equation is written as:

θB
t = θB

t−1 + νt + µt = θ̃B
t + µt (5)

Where θ̃B
t is the initial estimate derived using the stabilization al-

gorithm proposed in [9].

2.5. Foreground Motion Model

Since the objects in surveillance videos usually tend to be very
small, we simply apply a uniform distribution of the foreground
motion vector θF

t = dXF
t = {dxF

t , dyF
t }. Therefore, the new

location of object equals XF
t = XF

t−1 + dXF
t . If the objects are

not small, we can also adopt an affine parameter motion model as
the foreground motion model [10], as in (1).

3. MEASUREMENT MODEL USING MODALITY
FUSION OBSERVATIONS

Our ultimate goal is to improve the tracking accuracy of fore-
ground object space.In order to further improve the robustness of
the tracking system in dynamically changing environments, we
fuse multiple cues. In our system, all visual cues contribute si-
multaneously to the overall observation model, and the relative
relevances of cues are determined by the frame context currently
processed in the system, reflected as adaptive weights associated
with cues in the integration process. That means, no cue is pre-
determined as the “optimal” cue, but the system itself will weigh
the contributions of different cues according to the existing condi-
tions. We designed a particle filter based visual tracker that fuses
two principle cues, the appearance cue and the motion cue. For
each cue, a likelihood model is constructed. These models are not
entirely independent but are indirectly coupled by the result they
agreed upon [7]. We further assume that the measurements are
also conditionally independent given the state, so that the likeli-
hood can be factorized as

L(Y |x) =

M∏
m=1

L(Y m|x)

L(Yt, θ
B
t |θF

t ) =

M∏
m=1

L(Y m
t , θB

t |θF
t ) (6)

with M is the number of measurement sources. For each p(Y m|x),
the construction of the likelihood model is same. The importance
of each cue depends on the quality of the measurement the cue can
provide to the tracker, thus the cues are incorporated in an adaptive
manner.
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3.1. Motion-encoded Observation Model

We obtain the motion-based observation as follows. Let ∆t =
It − Tθ̂B

t
It−1, where ∆t is the difference image and It and It−1

are the original frames, Tθ̂B
t

is the stabilizing function with θ̂B
t .

The advantage of using the motion cue ∆t is: relative to the back-
ground, most of the targets in a surveillance video are in motion. In
such cases, motion information turns out to be a decisive measure-
ment to separate the foreground object from the relatively static
background, especially when the intensities of background and
foreground are not that different.

To analyze the motion of a foreground target, we process the
difference images, instead of the original frames. For delineating
the inside and the outside regions of the moving object, the edge
gradient information of the ∆ images is used. The edge image E
is generated as E = ∆⊗DoG, where DoG is a 2D derivative of a
Gaussian filter. We assume that the motion of one feature pixel on
the target can describe the motion of the entire target. A support
region is applied to each pixel to collect enough edge gradient mea-
surements for computing the cost function. In addition, we assume
that dxF and dyF are independent, and that their joint distribution
is uniformly distributed in a specified 2D space D2. The function
collects the match measurement in a pre-defined rectangle region
WX with X as its center.

The idea behind the foreground displacements estimation is: A
particular pixel in ∆t−1 image will move by a distance in ∆t im-
age due to motion continuity. This is estimated by matching a re-
gion between successive ∆ images using a cost function D(X; d)
where d denotes the linear translation d = (dx, dy). The cost func-
tion and the likelihood function are defined respectively as:

D(X; d) =
∑

Y∈WX

|Et(Y) − Et−1(Y + d)|
|WX| (7)

L(Y m
t , θB

t |θF
t ) ∝ exp (−D(X; d)

2σ2
1

) (8)

where |WX| is the number of pixels in the window WX, X rep-
resents a pixel position in the image (x, y)T , and Y m represents
the motion cue.

3.2. Appearance-encoded Observation Model

Another principal cue is derived from the local-appearance. It is
obtained by associating some reference template with the object of
interest. Templates extracted from the candidate regions in the cur-
rent frame are compared to this reference template, and smaller the
discrepancy between the candidate and reference templates, higher
is the probability that the object is located in the corresponding im-
age region. The localization performance hinges on the reference
template selection. To make it more robust, the template is set to
contain two components, a stable component and a dynamic one.
The stable component is the object model manually cropped in the
initializing stage. The dynamic one is the tracked object in time
instant t − 1 with the same size of the stable template after ac-
counting for the scale change, and is updated at each time instant.
Therefore, the cost function and the likelihood function are defined

respectively as:

D(X; d) =
∑

Y∈WX

(Tt − It(Y + d))2

|WX| (9)

(Y a
t , θB

t |θF
t ) ∝ exp (−D(X; d)

2σ2
1

) (10)

where Y a represents the appearance cue, Tt is the template at time
t, It is the original image at time t.

3.3. Adaptive Fusion

One important factor that affects the performance of multi-cue in-
tegration is the fusion weight set containing weights assigned to
each cue respectively. The values of weights reflect the contribu-
tions of the corresponding cues to the overall tracking system. We
denote them as αm,t. They are determined by the information reli-
ability of the different cues and can be quantified by the likelihood
functions of them. Hence, the multi-cue integration can be formu-
lated as a weighted product of the likelihood functions, the basic
rule is that each cue is associated with a score based on the er-
ror between the individual one’s saliency and the average saliency,
using a self-organized dynamic equation.

Our strategy is: in each frame, adjust the fusion weights ac-
cording to the current visual context, allowing them to react to
changing situation, and propagate them to the next frame as up-
dated fusion weights. Thus, the cues with less reliable information
get suppressed and those with reliable information contribute more
to the fusion process. So (6) is reformulated as:

L(Yt, θ
B
t |θF

t ) =

M∏
m=1

L(Y m
t , θB

t |θF
t )αm,t

∝
M∏

m=1

exp (−Dm(X; d)
2σ2

1

)
αm,t

(11)

The weights are determined as [7]; the error of each cue to the
estimated target is computed, then converted to a score qm between
0 and 1. Then these scores are normalized, and as follows:

ξα̇m,t = qm,t − αm,t (12)

αm,t =
ξ

ξ + 1
αm,t−1 +

1

ξ + 1
qm,t (13)

qm,t =
γm,t∑M
i=1 γi,t

(14)

γm,t = exp(−aĒm,t−1) (15)

Ēm,t−1 = D(Xm,t−1; dm,t−1) (16)

In figure 1 we show how the adaptive weights change for different
scenes. Sequence 1 shows a slow-moving pedestrian in a high
contrast video, therefore, the intensity information is dominant.
Sequence 2 shows a fast-moving pedestrian in a low-contrast video
and as a result, the weights for the motion information are larger
than those of the intensity information.

4. EXPERIMENT RESULTS

We applied our algorithm to different sets of outdoor surveillance
video sequences, where most of the objects are moving people.
Generally, the pedestrians are very small, occupying only 20-40
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Fig. 1. Plots of adaptive weights plot for different information
cues. The upper row shows a sequence containing slow-moving
objects, where the weight plot shows a dominant intensity cue in
the observation model; the bottom row shows a sequence contain-
ing a fast-moving object, where the weight plot reflects a strong ef-
fect from motion cues to the observation model. “dynamic” means
the likelihood function is estimated with respect to a dynamic tem-
plate while “static” means the likelihood function is estimated with
respect to a static template.

pixels. It is also noticeable that some of the targets show a very
poor intensity contrast. Some of the tracking results on different
scenes are shown in Figure 2 . In these images, bounding boxes
indicate target locations. The number of background motion par-
ticles is 150 with a Gaussian distribution as the proposal distribu-
tion, the number of foreground displacement particles is 25 with
[−2 : 2,−2 : 2] as the distribution space D2, the region window
WX is 5× 5 , and the size of the derivative Gaussian filter used is
10 × 10.

5. CONCLUSION

We have addressed a surveillance tracking algorithm using the par-
ticle filter. The approach builds a robust motion model over a
state-space of multiple-hypotheses for a moving object. The al-
gorithm can simultaneously track both the background motion and
the foreground motion, which improves the accuracy of the track-
ing result, especially in moving camera sequences; It constructs an
integrated multi-cue observation model to make the system more
robust. The experimental results demonstrate that the tracker re-
liably tracks multiple hypotheses, even under challenging condi-
tions with low-contrast and small objects. We are now investigat-
ing its applications to several problems such as vehicle tracking
and object classification.

Fig. 2. Tracking of pedestrians. The bounding box indicates the
location of the target.
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