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ABSTRACT

The objective of this paper is the design of adaptive quin-
cunx lifting schemes for lossless compression of multiband
images. More precisely, the operators of the lifting scheme
are modified according to the local activity of the multi-
variate input signal. To this respect, a block-based adaptive
strategy is adopted: the image is partitioned into a quadree
structure and a couple of optimal operators is assigned to
each resulting volumetric segmented block. Our main con-
tribution consists of a suitable quadtree partitioning rule that
takes into account simultaneously the spatial and spectral
redundancies. Simulations performed on real satellite im-
ages show that the proposed adaptive method outperforms
the conventional non-adaptive lifting schemes.

1. INTRODUCTION

The development of multimedia applications combinedwith
the improvement of the radiometric, spectral and, spatial
resolutions of imaging systems generates huge amounts of
digital data to be stored and transmitted. For example, in re-
mote sensing applications, a Thematic-Mapper Landsat im-
age requires several hundreds of megabytes and about 5,000
images are generated weekly. The need for data compres-
sion is obvious but some applications such as remote sens-
ing require lossless compression to ensure an accurate ex-
ploitation of the data (e.g. computation of physical ground
parameters). Besides, resolution scalability is a desired func-
tionality for image telebrowsing, its key issue consisting in
generating a multiresolution representation of the input im-
age. The up-to-date lossless coders make use of second gen-
eration of wavelet transforms derived from Lifting Schemes
(LS) [1]. Moreover, in the case of multispectral images, an
efficient representation of both spatial and spectral redun-
dancies is possible thanks to Vector Lifting Schemes (VLS)
[2]. Generally, the operators involved in such decomposi-
tions are the same for all the pixels of the input image. How-

ever, a significant improvement is achieved when the local
statistics of the input image are taken into account. Differ-
ent adaptive strategies were reported. The first one consists
in using adaptive operators whose weights are modified iter-
atively from the input data [3] or from the local gradient in-
formation [4, 5, 6]. In [7], instead of using the same predic-
tor and update for the whole blocks, we have obtained im-
provements by switching between predetermined couples of
operators according to the local statistics of the considered
blocks. However, it is worth pointing out that the method
we proposed so far, employs blocks that have the same size.
Recently, we have introduced more flexibility by employing
variable size blocks but this approach was restricted to the
case of monocomponent image [8]. In this paper aims at
extending such variable size block-based procedure to the
compression of multicomponent images.
The paper is organized as follows. In Section 2, a brief
overview of nonseparable quincunx vector lifting scheme
is given. In Section 3, we describe the generalized adap-
tive lossless coder. Simulation results are given and some
conclusions are established in Section 4.

2. VECTOR QUINCUNX LIFTING SCHEMES

Generally, the LS is applied in a separable manner for 2D
signals but nonseparable quincunx lifting schemes (QLS)
were found very appealing [9, 10] mainly, for two reasons.
Firstly, they are suitable for the coding of images digitized
on a quincunx sampling grid. Secondly, the involved opera-
tors may be more appropriate to describe the spatial content
of natural images. The description of a generic QLS re-
quires to define some notations. Let us denote by
{x(b)(m, n)}{b=1,...,B} the input image formed by B spec-
tral channels. The quincunx sampling (with a sampling
step equal to 1) generates the sampled image a

(b)
1/2(m, n) =

x(b)(m−n, m+n). More generally, a(b)
j/2(m, n) denotes the

approximation of the b-th band at resolution j/2, j ∈ N
∗,

II - 2130-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



when a multiresolution analysis of the quincunx sampled
image is performed. A generic QLS consists of three main
operations. These are applied globally to the whole spectral
bands. The first one starts by splitting a

(b)
j/2(m, n) into two

polyphase components x
(b)
j/2(m, n) and x̃

(b)
j/2(m, n):

{
x

(b)
j/2(m, n) = a

(b)
j/2(m − n, m + n)

x̃
(b)
j/2(m, n) = a

(b)
j/2(m − n + 1, m + n)

. (1)

The second step is a decorrelation step: the x̃
(b)
j/2(m, n) sam-

ples are predicted by the samples of the current band. Then,
the residual prediction coefficients d

(b)
(j+1)/2(m, n) are com-

puted:

d
(b)
(j+1)/2(m, n) = x̃

(b)
j/2(m, n) − �x

(b)
j/2(m, n)T p

(b)
j/2�, (2)

where x
(b)
j/2(m, n) is the reference data prediction vector

containing some a
(b)
j/2(m, n) samples and, p(b)

j/2 is the vector
of prediction weights. Finally, the approximation
a
(b)
(j+1)/2(m, n) of x(b)(m, n) at lower resolution results from

the update of the x
(b)
j/2(m, n) samples by the residual predic-

tion coefficients d
(b)
(j+1)/2(m, n). So, we calculate

a
(b)
(j+1)/2(m, n) = x

(b)
j/2(m, n) + �d

(b)
j/2(m, n)T u

(b)
j/2�, (3)

where d
(b)
j/2(m, n) is the reference detail vector and, u(b)

j/2 is
the vectors of update weights.
To better cope with the multiband nature of multispectral
images, we have defined the quincunx vector lifting scheme
(QVLS) [10]. More precisely, the d

(b)
(j+1)/2 and a

(b)
(j+1)/2

coefficients are computed by using the coefficients of the
b-th band and the other spectral bands. A basic example
of QVLS consists in considering the following neighboring
samples of pixel (m − n + 1, m + n):

x
(b1)
j/2 (m, n) =

⎛
⎜⎝

a
(b1)

j/2
(m − n, m + n)

a
(b1)

j/2
(m − n + 1, m + n − 1)

a
(b1)

j/2
(m − n + 1, m + n + 1)

a
(b1)

j/2
(m − n + 2, m + n)

⎞
⎟⎠ , (4)

and ∀i > 1, x(bi)(m, n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(bi)

j/2
(m − n, m + n)

a
(bi)

j/2
(m − n + 1, m + n − 1)

a
(bi)

j/2
(m − n + 1, m + n + 1)

a
(bi)

j/2
(m − n + 2, m + n)

a
(bi−1)

j/2
(m − n + 1, m + n)

.

.

.

a
(b1)

j/2
(m − n + 1, m + n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)
where (b1, . . . , bB) denotes a permutation of (1, . . . , B). It
is worth mentioning that the component b1 acts as a refer-
ence component for the intercomponent prediction of the

other components bi (i �= 1). For the sake of simplicity, no
update is performed:

∀j = 1, . . . , J ∀i = 1, . . . , B, u
(bi)
j/2 = 0. (6)

3. PROPOSED ADAPTIVE METHOD

3.1. Motivation

The performance of the previousQVLS depends on the choi-
ce of vectors p

(b)
j/2. Instead of using a fixed vector, improve-

ment is expected by accounting for the local statistics of the
input subbands. More precisely, we consider a block-based
adaptation procedure coupled to a classified prediction ap-
proach. To this respect, the original multicomponent image
is viewed as a volume of data (according to the spatial and
spectral dimensions). The objective is to segment the image
into nonoverlappingvolumetric blocks of variable size, each
segment or class being assigned to an optimal predictor. Ob-
viously, the key issues are both the optimization of the un-
derlying predictors and, the volumetric block-segmentation
procedure.

3.2. Prediction optimization

Within each class c, the B predictors are computed by min-
imizing the overall rate. However, the bit-rate criterion is
strongly dependent on the retained entropy coder. This is
the reason why we prefer to consider the global entropy
H

(c)
J of a J-stage decomposition, as a performance crite-

rion. It is defined as the average of the entropies {H(b,c)
J }B

b=1

of the representations of the B bands:

H
(c)
J

�
=

1

B

B∑
b=1

H
(b,c)
J . (7)

In turn, H(b,c)
J is the weighted sum of the entropies of the

approximation and, the detail subimages:

H
(b,c)
J

�
=

⎡
⎣ J∑

j=1

(0.5)jH
(b,c)
d,j/2

⎤
⎦ + (0.5)JH

(b,c)
a,J/2 (8)

where H
(b,c)
d,j/2 (resp. H(b)

a,J/2) denotes the entropy of the de-
tail (resp. approximation) coefficients of the b-th channel
within the given class c.

3.3. Adaptation through quadtree decomposition

Concerning the block-partitioning, we propose to apply a
quadtree decomposition (QT) since the quadtree is a hierar-
chical data structure that enables a simplified description of
the regions within a given image. Its construction requires
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the definition of a predetermined segmentation rule R tai-
lored to the compression application. A splitting approach
or a merging approach can be envisaged to build a quadtree
structure. The first technique operates in a top-down man-
ner. The image is partitioned in 4 volumetric quadrants.
Each quadrant can be subdivided into 4 smaller volumetric
subblocks if the rule R is satisfied. Then, the subdivision
procedure is repeated recursively until either there is no fur-
ther splitting needed or the minimum block size k1 × k2 is
reached. The resulting segmented structure is described by
the quadtree. Each node of the quadtree is uniquely asso-
ciated with a volumetric subblock. The size and the loca-
tion in the image of the volumetric subblock can be easily
derived from the position in the tree of the corresponding
node. In contrast, the alternative method (the merging pro-
cedure) is a bottom-up construction method. Indeed, we
start by partitioning the image into subblocks of minimum
size k1×k2. Then, each four adjacent volumetric subblocks
(called children) are tested to know whether they are homo-
geneous w.r.t. the rule R. If the test is positive, the 4 chil-
dren subblocks are merged into a father subblock which has
4 times the size of its children. Again, the merging proce-
dure is recursively applied until the largest block size (gen-
erally, the image) is reached.

3.4. The proposed algorithm

Our contribution consists in coupling the construction of the
quadtree with the adaptation of the lifting operator. For ex-
ample, let us consider the top-down quadtree partitioning.
• INIT The father block f is the whole multispectral im-
age, its four children c1, . . . , c4 correspond to the first 4
quadrants.
• OPTIM For each spectral component b, the predictors
p

(b,f)
j/2 and p

(b,ci)
j/2 of a J-stage QLS that are optimal in the

sense of the detail variance or the entropy, are computed for
i = 1,. . . , 4 and, J = 1, . . . , J . Let H(b,f)

J and, H(b,ci)
J

denote the entropy of the considered blocks.
• TEST SPLITTING We have to check whether the split-
ting of the father f into its 4 children yields a more compact
representation than the single father block does. In other
words, we have to check whether the following criterion R
is satisfied:

1

4B

4∑
i=1

(
B∑

b=1

H
(b,ci)
J

)
+o(ci) <

1

B

(
B∑

b=1

H
(b,f)
J

)
+o(f),

(9)
where o(n) denotes the coding cost of the side information
required by the decoding procedure at node n. Indeed, if
the average coding cost of the 4 children is smaller than the
father coding cost, then the splitting of the current father-
quadrant into 4 chidren quadrant is retained. Then, the pre-
vious procedure is applied successively and separately to

the resulting four children. Otherwise, the splitting of the
father-node is not advantageous and the father quadrant is
viewed as a leaf-node. The procedure is repeated until block
size k1 ×k2 is reached. In a similar manner, it is easy to de-
rive the bottom-up construction of the quadtree.

3.5. Evaluation of the coding cost

The side information contains information about the tree de-
composition and the predictors used in the QVLS. A coding
procedure is indeed required to describe the tree structure.
Generally, the bit “1” is assigned to a parent node and the
bit “0” to a leaf so that a binary sequence is associated with
each leaf node. Obviously, the image pixels may always
be considered as leaves. Therefore the tree structure cod-
ing can be stopped one level before the deepest level. Then,
a run-length coding can be applied to the resulting set of
binary sequences. Finally, the prediction coefficients p

(bi)
j/2

must also be transmitted. As they can take floating values,
they cannot be encoded in a lossless manner. Therefore,
they have to be rounded prior to the arithmetic coding stage.
The detail coefficients d

(bi)
(j+1)/2(m, n) have then to be com-

puted again with the new values of the rounded prediction
coefficients. Finally, it is worth mentioning that we have
chosen to code the side information by variable-length and
arithmetic coders because the latter are known to achieve a
rate very close to the entropy of the underlying source sym-
bols.

4. EXPERIMENTAL RESULTS

First of all, we would like to illustrate visually the QT de-
composition procedure on a monocomponent image. In Fig-
ure 1, the top-down QT decomposition procedure is illus-
trated for the monocomponent “Barbara” image of size 512
× 512. The resulting decomposition provides 19 leaves
with different sizes. It should be noted that the macroblocks
correspond to the spatially homogeneous regions. Concern-
ing the multispectral images, we have used SPOT images
with respectively B = 3 (“Tunis87”) and B = 4 compo-
nents (“Kairouan”). We have also used a set of B = 7 spec-
tral bands corresponding to a Thematic Mapper scene called
“Trento”. All the tested images are of size 512 × 512, each
component being coded at 8 bpp. Table 1 provides the av-
erage entropy with intra-band mode (QLS) and inter-band
mode (QVLS) of the quadtree-adaptation procedure. We
note that the inter-band coding gives an important contribu-
tion to reduce the coding cost of multispectral images com-
pared to the intra-band coding whatever the band-ordering
is. However, some band-ordering yields more compact rep-
resentations than others and they are related to the mutual
redundancies between the spectral components. For exam-
ple, concerning “Trento” image, the difference between the
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intra and inter coding amounts 1.2618 bpp in the case of the
band-ordering (6,7,1,2,3,4,5). This represents a substantial
gain in the context of lossless coding. Finally, a comparison
with the separable 5/3 transform which was adopted in the
lossless mode of the JPEG2000 standard (with an equiva-
lent number of decomposition stages) indicates that the in-
ter mode, adaptive quadtree-based technique can be viewed
as a competitive lossless coding method.
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Fig. 1. Top-down approach, the resulting quadtree decom-
position of the monocomponent image has 19 leaves: 2
blocks (256 × 256), 5 blocks (128 × 128) and 12 blocks
(64 × 64).

Table 1. Average entropy (in bpp), a four-stage decomposi-
tion is used in the non separable case and a two-stage sepa-
rable decomposition is performed concerning the 5/3 trans-
form.

Image Band-ordering 5/3 QT, intra QT, inter
(QLS) (QVLS)

Trento 1,2,3,4,5,6,7 3.5247 3.8101 3.7450
2,3,4,5,6,7,1 3.0627 2.8957
3,4,5,6,7,1,2 3.4052 3.3866
4,5,6,7,1,2,3 5.1190 4.8977
5,6,7,1,2,3,4 5.1448 4.9711
6,7,1,2,3,4,5 3.8851 2.6233
7,1,2,3,4,5,6 4.0683 3.8936

Tunis87 1,2,3 2.9004 2.7411 2.8697
2,3,1 2.9900 2.9487
3,1,2 3.0159 2.7465

Kairouan 1,2,3,4 4.7544 4.4933 4.2042
2,3,4,1 4.3893 4.0290
3,4,1,2 3.8787 4.2339
4,1,2,3 3.9760 4.1520
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