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ABSTRACT

The lifting scheme is a useful tool to create different types 

of wavelet decompositions, including adaptive and 

nonlinear. Generalized lifting is more flexible and can 

improve lifting results, but the design of generalized 

prediction and update steps remains difficult for a given 

application. A design strategy to optimize the prediction 

step according to the image statistics is established. The 

criterion aims to minimize the detail signal coefficients 

energy. The scheme is used for lossless compression of 

several classes of images without any book-keeping or 

side information requirements. Promising results are 

reported for certain classes of images.

1. INTRODUCTION 

Adaptive and non-linear decompositions can describe 

images in a sparser way than classical wavelets do. The 

lifting scheme [1] is an excellent tool for developing such 

decompositions, mainly because the lifting structure itself 

assures reversibility. In [2], a generalization of the lifting 

scheme was proposed in order to allow more flexible 

nonlinear decompositions. However, nonlinear processing 

has a fundamental drawback in the context of 

compression: filter design for an embedded lossy-to-

lossless code is very difficult. In this paper1, we focus on 

lossless compression. There are many applications 

requiring compression in which the original image should 

be exactly recovered, as in medical imaging because of 

regulatory issues or in remote sensing. 

In [3], we proposed an optimization criterion to design 

generalized prediction. The goal of the criterion is to 

minimize the energy of the detail coefficients energy. 

Promising results were demonstrated but the drawback of 

the approach is that the some statistical property of the 

image such as its probability density function (pdf) has to 

be known in advance. In some application, this is not a 

problem since the pdf can be fixed for a specific class of 

images and a specific lifting can be designed for this 

application. In this paper, we extend the previous 

1
This material is based upon work partly supported by the IST program  

of the EU in the project IST-2000-32795 SCHEMA. 

approach [3] by avoiding the necessity of knowing the pdf 

beforehand. The solution consists of using adaptive 

generalized prediction steps in the lifting. More precisely, 

we propose a scheme that iteratively updates an optimized 

prediction design within the discrete generalized lifting 

framework. This prediction applied to natural images 

performs close to the LeGall wavelet via lifting used in the 

Jpeg2000 standard for lossy-to-lossless compression. For 

those images with a pdf diverging from that of natural 

images promising coding gains are obtained. Concretely, 

we apply the new prediction step to biomedical 

(mammography), remote sensing (sea surface temperature, 

SST) and synthetic images and evaluate the gains provided 

by the proposed prediction.  

In section 2, the classical and the generalized lifting 

are briefly reviewed. Section 3 focuses on the design of 

the prediction step. Results are reported in section 4 and, 

finally, conclusions are established in section 5. 

2. GENERALIZED LIFTING 

The lifting scheme (Figure 1) introduced in [1] is a well-

known method to create bi-orthogonal wavelet filters from 

other ones. Usually, a polyphase decomposition (or Lazy 

Wavelet Transform, LWT) of the input signal xo is initially 

done, obtaining an approximation x and a detail signal y.

Then, lifting steps are performed by predicting the detail 

signal from the x samples (1) and updating the 

approximation signal with the y samples (2). The so-called 

prediction and update lifting steps improve the initial 

wavelet properties 

xPnyny'   (1) 

'' yUnxnx                   (2)

Inspired in [4], a generalization of the lifting scheme 

was proposed in [2]. As can be seen in Figure 2, the 

generalized prediction and update steps combine the 

filtering stage as well as the addition of classical lifting. 

This leads to a more general framework, allowing more 

complex and possibly nonlinear operations.  

To establish a formal definition of the generalized 

steps, let A be the set of functions a from k to itself; 
kkaAa : , such that: 
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Fig. 1. Lifting Scheme 
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Fig. 2.  Generalized Lifting Scheme

{z1’[n], z2’[n-n1],.., z2’[n-nk]}= a{z1[n], z2[n-n1],.., z2[n-nk]}      

We denote the samples by z in order to maintain the 

same definition for both the prediction and the update 

steps. For the prediction (update) step, it is assumed that 

z1[n]=y[n] and z2[n]=x[n] (z1[n]=x[n] and z2[n]=y[n]). Let 

A0 be the subset of A containing all functions that do not 

modify z2[n], that is, for which the restriction to k  is the 

identity: IdaAaA kko |
| . Then, a generalized 

lifting step is any function belonging to A0.

In order to have a reversible scheme, the generalized 

prediction and update can not be chosen arbitrarily. To get 

reversibility the generalized steps must be bijective 

functions of A0.

As presented, the scheme assumes that the values 

taken by x and y are real numbers. However, for lossless 

compression, it is useful to consider the discrete version of 

the generalized scheme in which it is assumed that the 

input and output values of the lifting steps are integers. 

Concretely, working in the framework of discrete gray-

scale images where each pixel is represented by 8 bits, we 

assume that sample values range from -128 to 127. Let us 

call Z255 the set of integers that belong to [-128,127]. 

Then, the discrete generalized steps are functions from the 
k

ZZ 255255
 space to itself that can only modify the first 

component. Note that the output values are also restricted 

to the interval [-128,127]. The statements made for the real 

case are still valid. In particular, reversibility is obtained if 

the following a mappings are bijective: 

{z1’[n], z2[n-n1],…, z2[n-nk]}=a{z1[n], z2[n-n1],…, z2[n-nk]}

For z2[n-n1], …, z2[n-nk] fixed, the set of all possible 

values of z1[n] describes a column in the 2

255255 ZZ space.

Let
k

Zi
C

255

denote such a column: 

kkZi
innzinnznzC k 21121 ,,,

255

As the generalized update and prediction can only modify 

the first component z1[n], they map any column 
k

Zi
C

255

to 

itself. In order to have a reversible scheme, this mapping 

should be bijective for all columns. Figure 3 illustrates the 

case where k=2.
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Fig. 3. Discrete mapping from 2

255255 ZZ  to itself. The lifting 

step is reversible if all mappings from every column Cj,k

(
k

Zi
C

255

) to itself are bijective. 

3. ADAPTIVE OPTIMIZED PREDICTION 

The optimized prediction is a transform applied to a 

sample y[n] knowing its k neighbors, x[n]. In this case, a 

column is defined as follows: 

kkZi
innxinnxnyC k ,,, 11

255

The filter design problem amounts to find a bijective 

mapping for every column 
k

Zi
C

255

 of the k
ZZ 255255

 space 

to the transformed column, noted 
k

Zi
C

255

' .Columns form a 

partition of the k
ZZ 255255

 space, so the prediction (P)

mappings are independent. Accordingly, every mapping 

(Pi) can be designed independently from each other:    

kZi
inxi nyPnxnyP

255

,

Given k
Zi 255

, the transform relates every input 

value y[n] one-to-one with every output value y'[n]. So, 

the output values for each i are related to the input values 

simply through a permutation matrix 
iP :

iii CPC' .

The prediction step can be seen as the union of 

card(Z255
k) permutation matrices. Thus, the complexity 

associated to this formulation grows rapidly with k. In 

practice, one has to use a low value of k (i.e., a reduced 

number of context values x[n]) or to take advantage of the 

similarities between permutation matrices that may arise.  

3.1. Optimized Prediction Design 

We aim at designing a mapping that minimizes the 

expected energy of the detail signal coefficients,  y'[n]:

k i
Zi

pp
opt ixyEyEP

255

|'minarg'minarg 22

Second equality is due to the independency of 

columns. Then, the design of the prediction function 

reduces to the definition of the optimal column mapping Pi

(or permutation matrix 
iP ) for every column: 

...|'|'
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Fig. 4. Example of a mapping for natural images of the proposed 

prediction (solid line) and LeGall prediction (dash-dot line). 

Vertical dotted line indicates the mean value of both neighbors 

(the most probable input).
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Fig. 5. An optimized mapping (solid line) for SST images class 

and the LeGall prediction (diagonal dash-dot straight line) for the 

same context (vertical dot lines indicate both neighbors values).

Because Pi is an isomorphism, this equation can be 

expressed as: 
127

128

212 )(||'
n

i nPixnyPixyE

T

iii PPv
2121

127...128

Where ixyPixyPv i |127...|128 .

Introducing the permutation matrix, we obtain 
T

ii vPixyE 222 )127...()128(|'

which is minimized when the permutation relates input 

values of high probability with small output values. 

As a result, assuming that the conditional pdf is 

known, a column mapping is created by constructing a 

vector with input values sorted by their probability in 

descending order. Then, the first element of this vector, 

which is the most probable input sample for the given 

context, is mapped to a 0 output value (the minimum 

energy output). Then, the output value -1 is assigned to the 

vector second element, 1 to the third, 2 to the fourth and so 

on. In summary, a prediction step is performed by column 

mapping vectors which form look-up-tables (LUT) that re-

order input values according to their probabilities. LUTs 

are practical representations of the permutation matrices. 

The case of natural images illustrates the behavior of 

the proposed prediction. First, we restrict ourselves to k=2

(assumption which holds for the rest of the paper), and 

compute the pdf of a sample y[n] given its two neighbors 

x[n] and x[n+1] for a set of natural images. Note that the 

neighbors are the same as the one used in a LeGall 

prediction step used in Jpeg2000 [5]. A clear pattern 

appears for all contexts: The conditional pdf has a 

maximum at the mean of the two neighbors and decreases 

monotonically and symmetrically on both sides. The 

resulting prediction has two parts, a linear one around the 

pdf maximum, and a nonlinear for the remaining values. 

 As Figure 4 shows, this prediction is the same as 

LeGall's, y'[n] = y[n] – [(x[n]+x[n+1])/2] in the linear part 

(input values between -125 and 50), and differs only in the 

nonlinear part, which is indeed, the part of the less 

probable values. For this reason, no gains are obtained 

coding natural images, but compression improvements 

will be attained for images with less regular pdf. Figure 5 

depicts an example where the optimized prediction 

mapping turns out to be very different from the LeGall's 

prediction mapping. In this case, the pdf is not symmetric 

with respect to the mean of the of the two neighbors and 

the optimized prediction significantly reduces detail 

coefficients energy compared to LeGall's prediction. 

3.2. Adaptive Probability Estimation

For certain classes of images, like biomedical or 

remote sensing, a reasonable choice is to estimate the 

conditional pdf using several images of the class and then 

construct the LUTs, which should be available at coder 

and decoder in order to perform the transform and the 

inverse transform for other images. For k=2 and taking 

advantage of the symmetry observed in the pdf, such 

LUTs require around 4 Mbytes each one. Reference [3] 

reports compression gains up to 6% and 20% respectively 

for mammography and SST images. Considering that 

these images have a size up to several Mbytes, the coding 

of an even small database would justify the LUTs storage.  

However, it is possible to avoid this a priori

knowledge if a pdf estimation is performed from the actual 

image to code. The estimation should be updated at each 

sample n in a way that permits the coder and decoder to 

reach the same results, i.e., a synchronized iterative 

estimation. In this case, the prediction is matched to the 

image statistics. Furthermore, the pdf can be estimated for 

each resolution level and each direction reaching finer 

optimization than using a single LUT for all resolution 

levels and directions.  

Non-parametric density estimation methods are suited 

for our application because they model the data without 

making any assumption about the form of the distribution. 

Kernel-based methods represent a subclass of these 

methods which construct the estimation by locating 

weighted kernel-functions at the samples index position. 

Experiments with different kernel shapes and bandwidths 

have been realized leading to similar results. We have 

chosen to use the simplest of them, the histogram, because 

it almost does not worsen results respect to other kernels 
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and it has two other interesting properties for our purpose. 

First, it can be demonstrated that histogram pdf estimation 

converges to the optimal pdf which minimizes the detail 

signal energy for the image at the given resolution level 

and filtering direction. Secondly, in practice the choice of 

the histogram avoids an explicit pdf estimation that other 

choices would not allow: since at each sample only one 

histogram bin is modified, it is only necessary to re-order 

that bin in the vector that relates input probabilities with 

output values. In consequence, the time-consuming pdf re-

estimation and the sorting pass of probabilities for 

constructing the input-output vectors are avoided.  

An initial pdf estimation is required when no data is 

available. Different initial estimations could be envisaged, 

for example, an interesting approach is to use the LUT of 

the image class at hand and then refine the pdf on the fly 

for the specific image being coded. In this work, the 

chosen a priori is the pdf corresponding to natural images. 

At a given sample, the pdf estimation is done by adding 

the a priori (pdf of natural images) with the histogram of 

all samples seen until the current one. The estimated pdf is 

then used to optimize the prediction for the current 

sample.  

4. RESULTS 

For testing purposes, several images have been 

compressed with the proposed 1-D adaptive optimized 

prediction with 2-taps and followed by the EBCOT coder 

[5]. Note that no update stage is used. The image is first 

filtered vertically and then, only approximation signal is 

filtered horizontally, resulting in a three-band 

decomposition. It has been observed that there is no gain 

in applying the horizontal filter on the detail signal. The 

pdf is estimated twice at each resolution level, vertically 

and horizontally. For comparison, images are also coded 

with lossless Jpeg2000 (using LeGall filter with the 

classical lifting scheme) and with the fixed prediction 

(assuming the pdf is available for this image class) and 

followed by EBCOT. Table 1 shows results for 4 

resolution level decompositions.  

As explained, optimized prediction when applied to 

natural images tends to perform slightly worse than LeGall 

filter for all resolution levels. The fixed prediction method 

improves the results by 6% for mammography and 19% 

for SST images respect to Jpeg2000. Adaptive optimized 

prediction performs 4.5% better than Jpeg2000 for 

mammography and 18% better for SST images, that is, 

only slightly worse than fixed method but without the 

drawback of keeping a LUT in memory for every image 

class. For synthetic images (which cannot be treated as a 

class of image) the adaptive prediction gives compression 

rates up to 80% better than LeGall's. Both synthetic image 

examples in table 1 come from the official Jpeg2000 test 

set.

Fig. 6. Example of a Sea Surface Temperature image (left) and a 

mammography (right). 

Bpp Jpeg2000 Fixed Pred. Adapt. Pred.

SST (3 Images) 2.874 2.325 2.356

Mamnography (5 Im.) 2.444 2.302 2.333

Cmpnd1 2.082 ------- 1.352

Chart 3.088 ------- 3.038

Table 1. Mean values for SST and Mammography classes and 

for 2 synthetic images using 4 resolution levels.  Results in Bpp.

5. CONCLUSIONS 

The generalized lifting scheme framework is used to 

derive a prediction step that aims to minimize the detail 

signal energy given an estimation of the conditional pdf of 

a sample. In this paper, we have shown how the 

conditional pdf does not need to be known in advance and 

can be estimated iteratively. The proposed prediction is 

nonlinear because of the mapping and adaptive as the pdf 

is progressively estimated while processing the image. 

Good results are obtained for images with a pdf 

considerably different from that of natural images, like 

biomedical or synthetic, and especially good results arise 

when the image is large enough to obtain a precise pdf 

estimation for most of the contexts. In our experiments, 

this happens for the SST images. Even if our filter support 

is smaller than LeGall's, compression gains are up to 20%. 

Note that larger supports seem to be difficult to handle in 

practice if the pdf does not show any structure. Moreover, 

to improve these results, it would be interesting to design 

an optimized update step following a strategy similar to 

the one described for the prediction. This will be the focus 

of our future research. 
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