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ABSTRACT

This paper presents a new image coding framework that sepa-
rates singularities based on their topological dimension: point sin-
gularities (0D), line singularities (1D) and plane (2D). Contours
are smooth curves corresponding to line singularities and bound-
aries of plane singularities. We propose to directly code contour
locations in the spatial domain and spatially adapt the bases to ap-
proximate various singularities conditioned on contour locations.
The key to the success of our forward adaptive coding lies in the
exploitation of contour geometry while achieving spatial adapta-
tion. Preliminary experimental results are used to demonstrate the
potential of our approach.

1. INTRODUCTION

The fundamental challenge with image coding arises from the di-
versity of singularities in natural images. Recent advances in im-
age coding are largely due to spatially adaptive statistical model-
ing of wavelet coefficients [3, 15, 14]. Despite the popularity of
wavelet coding, it is difficult to exploit geometric constraints of
image source in the wavelet space. Although geometric wavelet
bases such as contourlets [2], bandelets [6] have been proposed,
they are facing the same problem as wavelets − i.e., only suitable
for certain type of singularities.

An improved understanding of image source can be obtained
by a geometric perspective of modeling singularities. Specifically,
we propose to classify image singularities based on their topolog-
ical dimension: point (0D), line (1D) and plane (2D). The topo-
logical dimension of a singularity point can be understood as the
number of coordinates needed to locally specify the singularity
points observing the same probability distribution function (PDF).
For example, the boundary pixels of an object are line singulari-
ties because locally they form a 1D manifold. More examples of
singularities with different dimensions are shown in Fig. 1.

It should be noted that the locality in the definition of topo-
logical dimension of singularities is a scale dependent concept
[5]. Roughly speaking, the scale of an image is determined by
the distance of objects to the camera (scene depth) and the camera
point-spread-function (PSF). Furthermore, the source of illumina-
tion (e.g., shading or shadow), which also contributes to singular-
ities in natural images, has not received sufficient attention so far
to the best of our knowledge. Since natural scenes often consist
of objects across a wide range of scales and with varying lighting
conditions, natural images contain a mixture of singularities with
varying dimensions.

Topological dimension of image singularities sheds new in-
sights into the practice of image coding. Specifically, line and
plane singularities represent two classes of events at the opposite

ends of the spectrum: line singularities are more localized in space
than frequency while plane singularities go the other way. Depend-
ing on the scale, both line and plane singularities could turn into
point singularities whose localization leans towards neither space
nor frequency. Therefore, wavelet bases, with good localization
property in both space and frequency, represent a compromised
strategy of handling the diversity of singularities in natural images.
The question is: why compromise?

In this paper, we present a forward adaptive approach that spa-
tially adapts the bases to match the dimensionality of singulari-
ties. In our approach, contours that mark the location of line and
plane singularities are explicitly detected and directly coded in the
spatial domain. Conditioned on contour locations, we employ 1D
and (shape adaptive) 2D discrete cosine bases to approximate line
and plane singularities respectively. For regions other than line
or plane singularities (i.e., point singularities and smooth areas),
we propose a contour adaptive (CA) wavelet transform (WT) that
intelligently packs wavelet bases to avoid their support being over-
lapped with contours.

This work distinguishes from segmentation-based coding of
arbitrary shape objects adopted by MPEG-4 [1] in the following
aspects. First, line singularities represent a class of pixels satis-
fying 1D manifold constraint but impossible to be segmented into
either object due to nonideal PSF of camera (we will elaborate on
this issue in Section 3A). Realizing such pitfall with object seg-
mentation, we propose to treat line singularities separately as a 1D
coding problem. Second, object segmentation often become diffi-
cult due to interference from lighting condition variations (e.g., the
boundary of objects might not form a close curve due to shading).
We propose to get around such difficulty by enforcing support con-
straint in CA-WT (refer to Section 3B).

We also mention there exist other attacks on geometric mod-
eling of natural images in the literature. In [4], it was proposed to
decompose an image u into two additive components v+w, where
v, w model geometric and texture components of u respectively.
The weakness with such approach is the intrinsic redundancy with
coding the location information. In [13], an image is structured
into three classes of blocks: smooth, texture and geometry. Mod-
est coding gain was reported over wavelet-based SFQ coder [15].
In [9], a more flexible quadtree-based image representation and
Rate-Distortion optimized pruning method are developed and give
good performance for piecewise smooth images.

2. SINGULARITY CLASSIFICATION

In this section, we discuss the classification of singularities based
on their topological dimension and highlight the importance of
contours.
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A. Topological Dimension of Singularities
Singularities are important because they carry critical informa-

tion about the image content. In natural images, the origin of sin-
gularities is diverse: boundaries of objects at different scene depth,
reflectance variation of a rough surface, shading or shadow caused
by the interaction between scene geometry and lighting conditions,
and so on. We argue that such diversity of singularities is the fun-
damental challenge with modeling natural images.

To overcome such difficulty, we propose a geometric approach
of modeling image singularities. Since the dimension of an object
is a topological measure of the size of its covering properties, we
propose to define topological dimension of a singularity point as
follows:

Definition For any singularity point, its topological dimension
is the number of coordinates needed to locally specify the singu-
larity points observing the same probability distribution function
(PDF).

For example, any singularity point within a textural region has
dimension of two (plane); while as the point moves to the bound-
ary of the region, it reduces to one (line). For a non-textural re-
gion where local PDF is constantly varying, the dimensionality
becomes zero (point).

One tricky issue in the above definition is locality (it also af-
fects how we define textures in the above example). When we
think of a pair of physical points in the scene, their projected dis-
tance in the image is arbitrary depending on the camera distance
(scale). Therefore, locality heavily depend on the scale of the im-
age − e.g., when we look at a tree in the forest from a far dis-
tance, the whole forest is local; while as we move close, only ad-
jacent trees are qualified as local. Such scale-dependency largely
contributes to the varying localization property of singularities in
space and frequency.

In this work, we suggest that line singularities are more lo-
calized in space while plane singularities are more localized in
frequency (point singularities lie somewhere between). We are
particularly interested in contours that are defined as skeletons
of line singularities and boundaries of plane singularities. Con-
tours are special because of the manifold constraint − i.e., they
are essentially 1D manifold embedded in the 2D space (such con-
straint can be viewed as the generalization of geometric constraint
of edges). Resolving contour location uncertainty in the wavelet
space is doomed to fail because wavelet bases are suboptimal for
representing singularities. Instead, we propose to extract contours
from an image and directly code their positions in the spatial do-
main.

B. Contour Extraction for Classification
Contour extraction deals with the detection of line/plane sin-

gularities from an image. For detecting line singularities, we pro-
pose a three-stage strategy: preprocessing by anisotropic diffusion
[8] to suppress interference (e.g., noise and texture), edge detec-
tion and post-processing to remove spurious structures. A neces-
sary condition for a collection of connected point sets to form a
contour is that it has sufficient length and smoothness (manifold
constraint) as well as enough number of significant coefficients af-
ter WT (singularity condition). Therefore, if an image contains
objects at multiple scene depths, the boundary of some object in
the background might be declared as a contour only at a coarse
resolution (refer to Fig. 6).

For detecting plane singularities, we propose a Gabor-filtering
approach based on the observation that textures in natural images
are often localized in orientation and frequency. It is known that

Gabor bases localized in space, frequency and orientation are ef-
fective on texture discrimination [12]. By decomposing an im-
age under Gabor bases with K different orientations, we obtain
a K-dim orientation selectivity vector for each pixel. Pixels with
strong textureness can be detected by analyzing orientation selec-
tivity vectors. The boundaries of textural regions can then be ob-
tained by clustering texture pixels. Before being coded along with
the locations of line singularities, we might need to process the
boundaries to enforce the manifold constraint of contours.

3. CODING STRATEGIES

In the framework of forward adaptive image coding, contour lo-
cations need to be transmitted as overhead. We have found that
the manifold constraint of contours can be effectively exploited by
context-based adaptive arithmetic coding of either binary contour
maps or its equivalent chain-code representations. Conditioned on
contour locations, we divide image coding into two subproblems:
nonzero dimensional (line and plane singularities) and zero dimen-
sional (point singularities and smooth areas).

A. Coding of Line and Plane Singularities
Due to nonideal camera PSF, the width of line singularities

could be wider than a single pixel. The extracted single-pixel
contour can be viewed as the skeleton (zero-distance) of the 1D
manifold. Using distance transform, pixels away from the con-
tour would have positive or negative distances, as shown in Fig.
2. Based on the distance attribute, coding of line singularities
boils down into a 1D problem. The 1D coding problem can be
further facilitated by exploring contour geometry. If we model a
contour by the concatenation of curve segments, the phase of 1D
intensity profile slowly varies within each segment and only ex-
periences large jump at corners. Since abrupt phase jump clicks
with local statistics variation, it is desirable to treat each segment
independently (refer to Fig. 3). Specifically, we propose to apply
1D Discrete Cosine Transform (DCT) to each segment (note that
the dimension of basis is varying from segment to segment).

For plane singularities, we opt to use block discrete cosine
bases for their good localization in frequency and orientation. At
the region boundary where the block intersects with a contour, we
propose a variant of [11] that implements shape adaptive (SA)-
DCT without shifting rows and columns. The basic idea is to adap-
tively choose the starting point of row/column transform based on
contour geometry. Specifically, we propose to select the border
that mostly lies within the textural region and transform along the
direction perpendicular to that border first. Our modified scheme
enjoys the benefits of SA-DCT while simultaneously preserving
the geometry (relative positions of pixels) by avoiding shifting any
row or column. Fig. 4 shows two examples of modified SA-DCT.

B. Coding of Point Singularities and Smooth Regions
For other regions than line and plane singularities, we have de-

veloped a contour adaptive (CA)-WT. The key to the effectiveness
of CA-WT is that the support of wavelet bases does not run across
any contour (we call it “support constraint”). Ideally when con-
tours separate an image into unconnected regions, existing shape-
adaptive(SA)-WT [7] can be adopted. Unfortunately, for typical
natural images, contours are seldom close curves (refer to Fig. 6).
To overcome such difficulty, we opt to transform each horizon-
tal (vertical) segment separated by contours respectively (symmet-
ric extension is used at the segment boundary). To guarantee the
reversibility, we suggest to implement CA-WT by the celebrated
lifting scheme.
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In CA-WT, contour geometry can help resolve location un-
certainty of significant high-band coefficients. For example, if a
contour contains any geometric singularities such as corners with
large curvatures, corners will inevitably produce significant coeffi-
cients due to support constraint. Similarly, when the inter-contour
distance is smaller than 2k, the area between two contours would
degenerate into a single-pixel line after k-level CA-WT (refer to
Fig. 5). Again due to support constraint, transform at the next
level will definitely generate significant coefficients at the ends of
single-pixel line. However, since contour geometry is available at
the decoder, the positions of those significant coefficients caused
by support constraint do not require any overhead.

4. CODING RESULTS

In this section, we report some preliminary coding results to demon-
strate the potential of contour-adaptive image coding (no effort has
been put into Rate-Distortion optimization). First, we use popular
test image lena and barbara to illustrate detection of line and
plane singularities. Fig. 6a shows the extracted line singularities
for lena at the fine and coarse resolutions. It takes 4832 and 1880
bits respectively to code the contours at two scales (no plane sin-
gularities are found for lena). Fig. 6b shows the extracted line
and plane singularities (K = 16) for barbara. It can be seen
that Gabor-filtering strategy accurately picks out textural regions (
note that the manifold constraint still need to be enforced for the
boundaries to become legitimate contours).

Second, we use an experiment with synthetic 200 × 200 disk
image to shed some light on CA-WT. Fig. 7 compares the trans-
formed images between traditional WT and CA-WT. Due to the
support constraint enforced by CA-WT (wavelet bases can not
cross the circle), no significant coefficients are produced in the
high-frequency bands. It is estimated that around 2K bits are re-
quired for 1D DCT coding (significant coefficient positions: 800
bits, quantized values: 1200 bits) to achieve PSNR of around
40dB (contour location takes another 700 bits). By contrast, it
takes traditional wavelet coding 7K bits (significant coefficient po-
sitions: 5500 bits, quantized values: 1500 bits) to reach the same
distortion level.

To demonstrate the potential of contour adaptive image cod-
ing for real-world images, we have implemented a baseline coder.
Since our implementation still lacks contour smoothing for plane
singularities, we opt to report coding results for a textureless im-
age (e.g., a 512×512 subimage cut from JPEG2K test image bike
as shown in Fig. 3). The number of significant coefficients pro-
duced by CA-WT is about 50% less than that by traditional WT,
which contributes to the large coding gain for such specific image.
Further gain is possible because we have not incorporated the part
for automatically locating significant coefficients caused by sup-
port constraint in CA-WT (they should cost no overhead). Fig.
8 compares the portion of decoded images by our baseline coder
and by SPIHT coder [10] at the same bit rate of 0.192bpp. More
extensive coding results will be reported at the conference.
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Fig. 1. Singularity classification: point (0D), line (1D) and plane
(2D).
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Fig. 2. 1D manifold constraint of line singularities: red, green and
blue colors denote positive, zero and negative distances from the
contour respectively.

Fig. 3. Intensity function (left) and the corresponding contour ge-
ometry (right) of line singularities.

Fig. 4. Modified SA-DCT without row/column shifting (transform
goes along solid lines first and then dashed).

Fig. 5. At the marked area, the dimension of local support is two at
the high resolution (left) but reduces to one at the coarse resolution
(right).

Fig. 6. Left: detected line singularities at fine (gray) and coarse
(white) resolutions; right: detected line (gray) vs. plane (white)
singularities.

Fig. 7. a) original disk image; b) contour map; c) image after
traditional WT; d) image after CA-WT.

Fig. 8. Comparison of portions of decoded bike images
by SPIHT (left,PSNR=25.05dB) and our baseline coder (right,
PSNR=28.69dB) at the same bit rate of 0.192bpp.
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