
IMAGE COMPRESSION WITH MULTITREE TILINGS.

Y. Huang, I. Pollak, and C.A. Bouman

Purdue University
School of Electrical and Computer Engineering

West Lafayette, IN 47907

ABSTRACT

We use the framework of multitree dictionaries introduced in [9],
to design a novel DCT-based image coder which significantly out-
performs both the standard JPEG and the quadtree-based approach
of [13].

1. INTRODUCTION.

A number of research efforts have recently concentrated on de-
veloping adaptive algorithms for representing and approximating
signals in overcomplete dictionaries. This paper addresses the best
basis problem—or, more generally, the best representation prob-
lem: given a signal, a dictionary of representations, and an addi-
tive cost function, the aim is to select the representation from the
dictionary which minimizes the cost for the given signal. This
paradigm has been successfully used for problems in compres-
sion [11,13], estimation [4,5,10,12], and time-frequency (or space-
frequency) analysis [6–9, 14].

The original papers on best basis search [2, 3] considered the
wavelet packet bases and bases of local cosines on dyadic inter-
vals. In each of these two cases, all the bases in the dictionary
can be organized using a single tree: a dyadic tree in 1-D and a
quadtree in 2-D. This organization was exploited in [2,3] to devise
a fast recursive tree pruning algorithm to find the best basis for any
additive cost function.

Since then, a number of efforts have sought to lift the restric-
tions that a fixed dyadic/quadtree structure imposes on the un-
derlying dictionary. Search methods for various dictionaries that
correspond to different sets of possible time-frequency or space-
frequency tilings have been proposed, such as the double-tree algo-
rithm [6], time-frequency trees [14,15], space-frequency trees [7],
adaptive Haar-Walsh tilings [11], anisotropic wavelet packets [1,
5], anisotropic cosine packets [1], and mixed isotropic/anisotropic
packets [1].

In the present paper, we build on our results reported in [9]
where we developed a new framework of multitree dictionaries.
We use this framework to design a novel DCT-based image coder
which significantly outperforms both the standard JPEG and the
quadtree-based approach of [13]. The basic computational engine
for this coder is our optimal rectangular tiling algorithm [9]. We
start our discussion in Section 2 with a review of this algorithm.
It is then extended in Section 3, to result in an efficient JPEG-like
image compression algorithm which we experimentally compare
to JPEG in Section 4.

This work was supported in part by a National Science Foundation
CAREER award CCR-0093105 and a Purdue Research Foundation grant.

2. A FAST RECURSIVE TILING ALGORITHM.

We consider all images supported on a discrete rectangular domain
Q ⊂ Z

2. Suppose we are given an image f and would like to
segment it into rectangular tiles P1, P2, . . . , Pd so as to minimize
a cost which is equal to the sum of the costs of the individual tiles:

dX

i=1

c(Pi), where c is a cost function which is application specific

and which depends on the image f .
We restrict our choice of tilings to those which can be ob-

tained by recursively splitting rectangles into pairs of subrectan-
gles. Such a splitting process can be represented as a binary tree
whose root corresponds to the entire image and whose every node
corresponds to a unique rectangular region of the image. We as-
sign the cost given above to every tree t whose leaf nodes form the
tiling {P1, . . . , Pd}:

COST1(t) =
X

P∈leaves(t)

c(P). (1)

We then search over all trees to find one of the trees with the small-
est cost. The optimal tiling is then the leaves of this tree. Since our
search space consists of multiple trees, we call it a multitree dic-
tionary.

We now describe our efficient search algorithm. Let C∗
P be

the cost of the optimal tiling for a rectangle P . In particular, the
optimal cost for the entire image is C∗

Q = min
t

COST1(t). Our

search algorithm makes the following recursive call, starting with
P = Q:

C∗
P = min{c(P), min(C∗

P ′ + C∗
P ′′)}, (2)

where the inner minimization is done over all ordered pairs of rect-
angles (P ′, P ′′) which partition the rectangle P .

The pseudocode for the search algorithm is shown in Fig. 1.
The optimal tiling of P is denoted by B∗

P . Fig. 1(a) shows the
pseudocode for the recursive calculation of the optimal splits and
corresponding costs which are stored in a global data structure TA-
BLE. Once this piece of pseudocode is executed, the optimal tiling
is constructed using the routine in Fig. 1(b) which is assumed to
have access to the same global data structure TABLE.

3. IMAGE COMPRESSION.

3.1. Refinement: State Variables.

In our image coding algorithm, we allow the choice of several
quantizers for encoding each tile. To model this choice, we intro-
duce the concept of a state variable. To every tile P , we associate

II - 1930-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

(C∗
P , s∗P) ← best split(P) {

if C∗
P has been computed
get C∗

P and s∗P from the global data structure TABLE;
else {

s∗P ← ∅; //Initialize best left child s∗P
C∗

P ← c(P); //Initialize best cost C∗
P

for (P ′, P ′′) = a partition of P into two rectangles {
(C∗

P ′ , s∗P ′) ← best split(P ′);
(C∗

P ′′ , s∗P ′′) ← best split(P ′′);
if C∗

P ′ + C∗
P ′′ < C∗

P {
s∗P ← P ′; //Update s∗P
C∗

P ← C∗
P ′ + C∗

P ′′ ; //Update C∗
P

}
}
record C∗

P and s∗P in the global data structure TABLE;
}
return C∗

P and s∗P ;
}

(a) Recursive calculation of the optimal splits and corresponding costs.

B∗
P ← best tiling(P) {

get s∗P from the global data structure TABLE;
if s∗P is the empty set

B∗
P ← {P};

else
B∗

P ← best tiling(s∗P) ∪ best tiling(P\s∗P);
return B∗

P ;
}

(b) Recursive generation of the best tiling.

Fig. 1. Pseudocode specification of a fast recursive search for the
best rectangular tiling: (a) the recursive calculation of the optimal
splits and the corresponding costs; (b) the recursive generation of
the best tiling. It is assumed that both routines have access to the
same global data structure TABLE. The optimal tiling B∗

Q of an
image domain Q is obtained with (C∗

Q, s∗Q) ← best split(Q), fol-
lowed by B∗

Q ← best tiling(Q).

a state variable xP taking values in some finite set which, with-
out loss of generality, we assume to be {1, 2, . . . , X} where X is
some fixed integer. Each term of the cost function is now allowed
to depend on the corresponding state variable—in other words, we
replace the cost given in Eq. (1) with the following:

COST2(t) =
X

P∈leaves(t)

c(P, xP). (3)

We use the following recursive call to search for the best tree,
which now includes searching for optimal states:

C∗
P = min{min

xP

c(P, xP), min
P ′,P ′′(C

∗
P ′ + C∗

P ′′)}, (4)

where, in addition to searching over all partitions (P ′, P ′′) of P ,
we now also search over all possible values of the state variable
xP . The additional minimization over the state variables is im-
plemented as a straightforward modification of the pseudocode in
Fig. 1(a). The global minimum of COST2(t) is then C∗

Q.

3.2. Multitree-JPEG Image Coder.

To obtain our multitree-JPEG image coder, we fuse our rectangular
tiling algorithm with several aspects of the compression strategy
in [13]. The input image is partitioned into square blocks; for each

block, the optimal tiling is found, and every tile is encoded. Fol-
lowing [13], we assume that one of several quantizers can be used
for each tile, and optimize our choice of the quantizer for each tile
concurrently with the search for the optimal tiling, via the algo-
rithm of Section 3.1. When looking for the best tiling and the best
quantizers, we optimize with respect to the rate-distortion cost [13]
D+λR, where R is the number of bits it takes to encode the image,
D is the total distortion, and λ is a parameter. In order to use the
tiling algorithm of Section 3.1, we assume that the cost D+λR has
the form (3): D+λR =

X

P

(D(P, xP)+λR(P, xP)), where xP

is the quantizer used for the tile P , D(P, xP) and R(P, xP) are
the corresponding distortion and rate, respectively, and the sum-
mation is performed over all the tiles in the tiling. Since the cost is
additive, our rectangular tiling algorithm of Fig. 1, with the mod-
ification discussed in Section 3.1, can be used to find the optimal
tree and the best quantizer for each tile. For each tile, we follow a
JPEG-like procedure which finds the DCT coefficients, quantizes,
and entropy-codes the coefficients.

The optimal tree for each block is encoded as follows:

• one bit per node is used to indicate whether the node is an
internal node or a leaf;

• �log2 X� bits per leaf node are used to encode the state x;

• �log2 SPLITSP � bits are used to encode the split location for
every internal node P , where SPLITSP is the total number
of possible split locations for the node P .

Note that the iterative procedure described in [13] can be used
to adjust λ so as to minimize D subject to a fixed bit budget, and
a similar procedure can be used to minimize the rate subject to a
fixed distortion.

4. COMPRESSION EXPERIMENTS.

We compare our multitree-JPEG compression algorithm with a
standard JPEG and with the quadtree-based algorithm of [13].1 We
test the algorithms on two images: a 512 × 512 image “barbara”
and a 256 × 256 image “lenna”. The corresponding sets of rate-
distortion curves are shown in Fig. 2. In each figure, the rate in bits
per pixel is plotted against the peak signal-to-noise ratio (PSNR).
For each quadtree and multitree experiment, a target distortion was
fixed, and the rate was minimized. Note that our multitree algo-
rithm (dashdot) outperforms the standard JPEG (dash) by about
2-3 dB and the quadtree algorithm (solid) by about 0.5-0.7 dB at
a fixed bit rate. Equivalently, the multitree algorithm represents
compression savings of about 25-30% over the standard JPEG and
about 10% over the quadtree algorithm, for a fixed PSNR.

In these experiments, we take the block size to be 16 × 16,
and allow any partitions at multiples of 4 (i.e., the smallest possi-
ble cell size is 4 × 4). This means that, for each 16 × 16 block,
we search over 68480 distinct tilings—this is in contrast to the
quadtree method which only allows 17 distinct tilings, and the
standard JPEG which only considers one tiling. While the number
of possible tilings for our method is drastically larger, the number
of distinct subrectangles of each block—which is what determines

1The rate-distortion curves we obtain for the JPEG and quadtree al-
gorithms are different from those given in [13] since we use a somewhat
different implementation of JPEG—for example, we use a different set of
quantizers. However, the relative improvement of the quadtree algorithm
over JPEG that we observe is similar to what is reported in [13].

II - 194

➡ ➡

31.5 32 32.5 33 33.5 34 34.5 35 35.5 36 36.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

33 33.5 34 34.5 35 35.5 36 36.5 37 37.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

Fig. 2. Rate-Distortion curves for “barbara” (left) and “lenna” (right).

(a) Original image (b) JPEG, 1.04 bpp

(c) Quadtree, 0.81 bpp (d) Multitree, 0.74 bpp

Fig. 3. Results for the “barbara” image at PSNR = 34.3dB: (a)
original image, (b) JPEG (rate = 1.04 bits per pixel), (c) quadtree
compression (rate = 0.81 bits per pixel), and (d) multitree com-
pression (rate = 0.74 bits per pixel).

the computational complexity of our algorithm—is only 100, com-
pared to 21 for the quadtree method and 4 for the standard JPEG.
Thus, we are able to search over a much larger set with only a
modest increase in the computational burden.

The results for the “barbara” image at PSNR = 34.3dB are
given in Fig. 3: JPEG, quadtree, and multitree compression al-
gorithms achieve 1.04, 0.81, and 0.74 bits per pixel, respectively.
Note that the images look basically the same; however, the multi-
tree algorithm gives compression savings of 29% over JPEG and
9% over the quadtree algorithm.

Fig. 5 illustrates the results for the same image at the bit rate
0.49 bits per pixel. (In this experiment, the bit rate was fixed at
0.49, and the distortions for the quadtree and multitree methods
were minimized.) At this bit rate, JPEG, quadtree, and multitree
algorithm achieve PSNR for the overall image of 28.3 dB, 29.5
dB, and 30.4 dB, respectively. A patch from the image and its
three compressed versions is shown in Figs. 4 and 5. In addition
to a higher signal-to-noise ratio, it is clear from the figure that
the multitree algorithm results in both less blocky renditions of
homogeneous areas of the image, sharper edges, and less ringing
and blockiness in the textured areas and around the edges.

5. CONCLUSIONS.

We applied our framework of multitree dictionaries and the ac-
companying efficient search algorithm [9], to image compression,
and designed a new effective DCT-based image coder whose per-
formance was illustrated through several examples. In the future,
we plan to apply our framework to wavelet-based coders.

6. REFERENCES

[1] N.N. Bennett. Fast algorithm for best anisotropic Walsh bases and
relatives. J. of Appl. and Comput. Harmonic Analysis, 8:86-103, 2000.

[2] R.R. Coifman, Y. Meyer, and M.V. Wickerhauser. Wavelet anal-
ysis and signal processing. In Wavelets and Their Applications,
M.B. Ruskai et al., Eds., pp. 153-178. Jones and Bartlett, Boston,
1992.

[3] R.R. Coifman and M.V. Wickerhauser. Entropy based algorithms for
best basis selection. IEEE Trans. Inf. Th., 38(2):713-718, March 1992.

[4] D.L. Donoho and I.M. Johnstone. Ideal denoising in an orthonormal
basis chosen from a library of bases. Comptes Rendus Acad. Sci., Ser. I
319:1317-1322, 1994.

[5] D. Donoho. CART and best-ortho-basis: A connection. Ann. Stat.,
25:1870-1911, 1997.

[6] C. Herley, J. Kovac̆ević, K. Ramchandran, and M. Vetterli. Tilings of
the time-frequency plane: construction of arbitrary orthogonal bases
and fast tiling algorithms. IEEE Trans. Sig. Proc., 41(12):3341-3359,
Dec. 1993.

II - 195

➡ ➡

Fig. 4. A patch of the “barbara” image.

[7] C. Herley, Z. Xiong, K. Ramchandran, and M.T. Orchard. Joint space-
frequency segmentation using balanced wavelet packet tree for least-
cost image representation. IEEE Trans. Im. Proc., 6(9):1213-1230,
Sep. 1997.

[8] Y. Huang, I. Pollak, C.A. Bouman, and M.N. Do. New
Algorithms for Best Local Cosine Basis Search. In Pro-
ceedings of ICASSP, May 17-21, 2004, Montreal, Quebec.
www.ece.purdue.edu/˜ipollak/icassp04.pdf

[9] Y. Huang, I. Pollak, M.N. Do, and C.A. Bouman. Optimal Tilings and
Best Basis Search in Large Dictionaries. In Proc. 37th Asilomar Con-
ference on Signals, Systems, and Computers, Nov. 9-12, 2003, Pacific
Grove, CA.

[10] H. Krim and J.-C. Pesquet. On the statistics of best bases criteria.
In Wavelets and Statistics, Lecture Notes in Statistics, A. Antoniadis,
Ed., pp. 193-207. Springer-Verlag, 1995.

[11] M. Lindberg and L.F. Villemoes. Image compression with adaptive
Haar-Walsh tilings. In Wavelet Applications in Signal and Image Pro-
cessing VIII, Proc. SPIE 4119, 2000.

[12] P. Moulin. Signal estimation using adapted tree-structured bases and
the MDL principle. In Proc. IEEE-SP Int. Symp. TFTS, pp. 141-143,
Paris, June 1996.

[13] K. Ramchandran and M. Vetterli. Best wavelet packet bases in a
rate-distortion sense. IEEE Trans. Im. Proc., 2(2):160-175, Apr. 1993.

[14] C.M. Thiele and L.F. Villemoes. A fast algorithm for adapted time-
frequency tilings. J. of Appl. and Comput. Harmonic Analysis, 3:91-
99, 1996.

[15] Z. Xiong, K. Ramchandran, C. Herley, and M.T. Orchard. Flexible
tree-structured signal expansions using time-varying wavelet packets.
IEEE Trans. Sig. Proc., 45(2):333-345, Feb. 1997.

(a) JPEG, 28.3 dB

(b) Quadtree, 29.5 dB

(c) Multitree, 30.4 dB

Fig. 5. Results for the “barbara” patch at the bit rate of 0.49 bits
per pixel: (a) JPEG (PSNR for the overall image = 28.3 dB), (b)
quadtree compression (PSNR = 29.5 dB), and (c) multitree com-
pression (PSNR = 30.4 dB).

II - 196

➡ ➠

