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ABSTRACT

In this paper, we revisit the design of time-domain lapped trans-
form for error resilient image transmission. A general structure is
first proposed whose solution is given by a Wiener filter. Two sim-
plified schemes with different tradeoffs between complexity and
performance are then developed, for which Wiener filter solutions
also exist. We will show that the existing method is a special case
of the general scheme. Design examples and image coding exper-
iments verify that the performance of our new approach is signifi-
cantly better than existing techniques.

1. INTRODUCTION

With the rapid development of Internet, computer and wireless
communications technologies, there have been growing demands
for delivering compressed images over Internet and wireless net-
works. This poses new challenges to conventional image compres-
sion algorithms, which are extremely vulnerable to transmission
errors. On the other hand, perfect reception of all data is usually
not necessary due to the intrinsic structures present in most natu-
ral images. Special algorithms known as error concealment can be
employed to produce reasonable visual quality in the presence of
transmission error.

Among the error concealment techniques that have been pro-
posed [1], some methods, such as the reversible variable length
coding [2], introduce error resilience at the encoder. Some of them
focus on the decoder side by estimating the lost data with methods
such as interpolation and projection onto convex sets [3, 4]. Other
approaches tackle the problem by a joint design of the encoder and
decoder, for which the lapped transform is a powerful tool [5, 6, 7].

In the original lapped transform [5], a postfilter is applied at
block boundaries after the DCT. The postfilter can be designed
to remove the remaining redundancy between neighboring blocks,
and thereby improving the coding efficiency of the DCT and re-
ducing the blocking artifact associated with DCT-based schemes.
Notice, however, that the postfilter also spreads out the informa-
tion of a block to its neighboring blocks. This property is used in
[6, 7] to achieve error concealment, where the lost blocks can be
better recovered by a judicious design of the forward and inverse
lapped transform.
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Fig. 1. Forward and inverse time-domain lapped transform.

Recently, a new family of lapped transform, called time-domain
lapped transform (TDLT) [8], has been developed. In TDLT, a pre-
filter at block boundaries is applied before the DCT. This makes it
more compatible to existing DCT-based infrastructures, because
dramatic improvement can be achieved with minimum changes to
existing software or hardware implementations.

The new lapped transform has also been applied to error con-
cealment [9, 10]. More flexibilities and better performance have
been demonstrated. In particular, the decoder can invoke two post-
filters - one for perfectly received blocks and another for lost blocks
to improve the visual quality.

In [6, 9, 10], the lost coefficient blocks are simply estimated
by averaging its neighboring blocks. This greatly limits the error
concealment capability of the lapped transform. In [7], a maxi-
mally smoothness recovery method is used, but its complexity is
increased significantly. In this paper, we first present a general
framework of TDLT-based error concealment, and give the corre-
sponding Wiener filter solution. Several simplifications of the gen-
eral structure and their optimal solutions are then developed. The
existing averaging method is revealed to be a very special case of
the general solution. Compared to the method in [9, 10], the recon-
struction error can be reduced by as much as 80% given the same
compression capability, and more than 4 dB improvement can be
achieved in image coding experiments.

2. GENERAL PRE/POSTFILTERING STRUCTURE FOR
ERROR CONCEALMENT

Fig. 1 illustrates the implementation of the time-domain lapped
transform for a system with block size of M . An M × M pre-
filter P is applied at the boundary of two neighboring blocks be-
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Fig. 2. (a) Existing decoder side error concealment design; (b) General structure for error concealment; (c) A special case of (b); (d) Further
simplification of (c).

fore the DCT. As a result, the basis functions of the forward trans-
form cover two blocks, and better compression performance can be
achieved by exploiting the correlation between neighboring blocks.
Correspondingly, a postfilter is applied by the decoder at each
block boundary after inverse DCT. The postfilter is simply the in-
verse of the prefilter if there is no transmission error. In what fol-
lows, we use x(i), s(i), y(i) and q(i) to denote the i-th block
of prefilter input, DCT input, DCT output, and quantization noise,
respectively.

The structure of the time-domain lapped transform allows an
effective strategy for error concealment. In this paper, we assume
that the DCT coefficients of a block are either received perfectly
or lost entirely. In [9, 10], the lost block is estimated by averaging
the received neighboring blocks. This mean reconstruction method
has also been used in [6, 7]. It is shown in [9, 10] that the pre- and
postfilter can be jointly designed such that the reconstructed qual-
ity is still satisfactory in the case of transmission error. Moreover,
two postfilters can be designed - one for perfectly received blocks
and another one for lost blocks. The overall scheme is shown in
Fig. 2 (a).

However, the approach in [9, 10] is only a special case of a
more general framework. To see this, notice that when ŷ(n) is lost,
the error concealment problem can be viewed as the estimation of
x̂(n) and x̂(n+1) from the observations ŷ(n−1) and ŷ(n+1), or
equivalently ŝ(n−1) and ŝ(n+1). Therefore the general solution
should be a 2M × 2M matrix H0, as shown in Fig. 2 (b).

Define

x2 =
�

xT (n) xT (n + 1)
�T

,

x4 =
�

xT (n − 1) xT (n) xT (n + 1) xT (n + 2)
�T

,

ŝ2 =
�

ŝT (n − 1) ŝT (n + 1)
�T

,

s3 =
�

sT (n − 1) sT (n) sT (n + 1)
�T

,

ŝ3 =
�

ŝT (n − 1) ŝT (n) ŝT (n + 1)
�T

,

q3 =
�

qT (n − 1) qT (n) qT (n + 1)
�T

.

(1)

The auto-correlation of the reconstruction error is given by

Ree = E{(H0ŝ2 − x2)(H0ŝ2 − x2)
T }. (2)

The linear MMSE solution of H0 is one that minimizes the fol-
lowing MSE expression:

E =
1

2M
trace{Ree}. (3)

The optimal solution is given by the Wiener filter

H
∗

0 = Rx2 ŝ2
R

−1
ŝ2 ŝ2

. (4)

Matrices Rx2 ŝ2
and Rŝ2 ŝ2

in (4) can be obtained as follows. First
of all, let us partition P into

P =

�
P0

P1

�
, (5)

where P0 and P1 contain the first and the last M/2 rows of the
prefilter P, respectively. Let C3 = diag{C, C, C} represent the
DCT of three neighboring blocks (C is the M -point DCT). We
have

ŝ3 = s3 + C
T
3 q3 = P34x4 + C

T
3 q3, (6)

where P34 = diag{P1, P, P, P0}. From (6) we get

Rx4 ŝ3
= Rx4s3

= Rx4x4
P

T
34,

Rs3 ŝ3
= Rs3s3

= P34Rx4x4
P

T
34,

Rŝ3 ŝ3
= P34Rx4x4

P
T
34 + C

T
3 Rq3q3

C3.

(7)

Rx4x4
and Rq3q3

in (7) are correlation matrices of x4 and q3,
respectively, and it is assumed that the input is uncorrelated with
the quantization noise. Matrices Rx2 ŝ2

and Rŝ2 ŝ2
in (4) can be

obtained from sub-matrices of Rx4 ŝ3
and Rŝ3 ŝ3

once Rx4x4
and

Rq3q3
are known.

When applied to image error concealment, an important re-
quirement is that each estimated block has the same brightness as
its neighbors. One way to achieve this is to make the sum of ev-
ery row of the filter to be unity. In this paper, this is ensured by a
simple normalization of the Wiener filter. Our results show that its
effect on MSE is negligible.

We point out here that all Wiener filters derived in this paper
have special structures, and can be factorized for fast implementa-
tions. The details are omitted due to space limitations.

Although the solution in (4) can be applied directly, several
simplified structures can be developed to achieve different trade-
offs between complexity and performance. In particular, we are in-
terested in finding the optimal solution for the two-stage approach
studied in [9, 10], where the lost block is estimated first before ap-
plying postfilter. Two such simplifications are presented next, and
their relationship with existing method will be discussed.

3. SIMPLIFIED PRE/POSTFILTERING STRUCTURES

In the two-stage error concealment method, we first estimate s(n)
by an M × 2M matrix H1, i.e.,

s̄(n) = H1ŝ2. (8)
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Table 1. Design Examples of Different Configurations

Without switching postfilter Switching postfilter
Cfg. P1 P10 P11 P12 P2 P20 P21 P22 P3 P30 P31 P32 P4 P40 P41 P42
α - 92 92 130 - 28 28 20 - 10.5 10.5 15.5 - 1 1 1
β - 0 0 0 - 0.6 0.6 2 - 0.5 0.5 0.5 - 0 0.15 0.15

GTC 6.96 6.96 6.96 6.95 8.41 8.42 8.42 8.43 9.17 9.17 9.18 9.19 9.61 9.61 9.61 9.61
GR 0.67 0.75 0.75 0.94 0.64 0.67 0.67 0.84 0.59 0.57 0.60 0.37 0.62 0.34 0.63 0.69
MSE 0.14 0.03 0.03 0.09 0.15 0.06 0.06 0.12 0.16 0.11 0.11 0.13 0.21 0.17 0.19 0.19

The postfilter is then applied as usual. A different postfilter can be
designed to improve the visual quality. The structure is shown in
Fig. 2 (c). Clearly, it only covers a subset of the general structure
in Fig. 2 (b), since H0 is restricted to be

H0 =

�
TM 0M

0M TM

��
� I1

H1

I2

�
� , (9)

where I1 and I2 are defined by

I1 =
�

0M

2

IM

2

0M

2

0M

2

,
�
,

I2 =
�

0M

2

0M

2

IM

2

0M

2

,
�
.

(10)

When applied to ŝ2, I1 simply extracts the second half of ŝ(n−1)
and I2 extracts the first half of ŝ(n + 1).

The optimal solution for H1 can be found by minimizing

E1 =
1

M
trace{E{(H1ŝ2 − s(n))(H1ŝ2 − s(n))T }}, (11)

and the solution is also a Wiener filter, which can be written as

H
∗

1 = Rs(n)ŝ2R
−1
ŝ2 ŝ2

, (12)

where Rs(n)ŝ2 is a sub-matrix of Rs3 ŝ3
. Since H∗

1 is only a func-
tion of the input and prefilter, the postfilter can be optimized to
improve the visual quality, as in [9, 10].

The complexity of the special case in (9) and Fig. 2 (c) can be
further reduced by imposing the following constraint on H1:

H1 =
�

H2 H2

	
= H2

�
IM IM

	
, (13)

where the size of H2 is M × M . This is equivalent to estimating
ŝ(n) by

s̄(n) = H2(ŝ(n − 1) + ŝ(n + 1)) � H2ŝa. (14)

The corresponding structure is given in Fig. 2 (d). Again, Wiener
solution exists in this case and is given by

H
∗

2 = Rs(n)ŝa
R

−1
ŝa ŝa

. (15)

The matrices involved can be obtained from (7) by simple manip-
ulations.

It is clear from (13) that the mean reconstruction method used
in [9, 10] is simply a special case of the already sub-optimal ap-
proach in (13) with H2 = 1

2
IM . Therefore it can be expected that

the error concealment performance can be improved considerably
if H∗

2, H∗

1 or H∗ are used.

4. DESIGN EXAMPLES AND APPLICATIONS

In this section, we show design examples of different error con-
cealment schemes. The following criteria are considered: coding
gain of the perfect reconstruction system, the MSE (3) in the case
of data loss, and the reconstruction gain. Among them, the coding
gain is a measure of the compression capability, which is given by

GTC � 10 log10

σ2
x
�M−1

i=0 σ2
yi
||fi||2

� 1

M

, (16)

where σ2
x is the variance of the input, σ2

yi
is the variance of the i-th

subband, and ||fi||
2 is the norm of the i-th synthesis basis function.

The input is assumed to follow an AR(1) model with correlation
coefficient ρ = 0.95.

The reconstruction gain measures the distribution of recon-
struction error when a block is lost. It is defined as [6, 10]

GR =


�2M−1
i=0 σ2

ei

� 1

2M

1
2M

2M−1
i=0 σ2

ei

, (17)

where σ2
ei

is the i-th diagonal entry of Ree in (2).
The final objective function is [10]

J = GTC − α E + β GR. (18)

Different solutions can be obtained by varying α and β and max-
imizing the function above. In this paper, the quantization noise
is ignored in Wiener filter expressions. Four families are obtained
with Matlab 6.5 and the results are summarized in Table 1, where
the configurations P1 to P4 are obtained from [10] with the mean
reconstruction method (H2 = 1

2
I). In the first two families, the

postfilter is simply the inverse of the prefilter, whereas dynamic
switching of two postfilters are used in the last two families. Wiener
filters in (4), (12) and (15) are used to obtain configurations Pi0,
Pi1, and Pi2 (i = 1, . . . , 4), respectively. All solutions in each
family are designed to have similar coding gains so that their per-
formance can be compared fairly. The first group yields the lowest
coding gain but enjoys the best resilience to error. On the contrary,
the last group has the highest coding gain and the worst robustness
to transmission loss.

It is clear from Table 1 that the MSE of error concealment can
be reduced substantially by the proposed methods. The improve-
ment becomes more prominent as coding gain decreases, since
there is more correlation among neighboring blocks. For exam-
ple, compared with P1, the MSE is reduced by an astonishing 80%
by P10 and P11. It can still be reduced by 10-20% even when the
coding gain is at its highest value, as in the P4 family. The table
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Decoding results with 50% slice loss. (a) Loss pattern; (b) Original TDLT postfilter (24.34 / 40.06 dB); (c) P4 (24.40 / 40.06 dB);
(d) P42 (24.64 / 40.09 dB); (e) P41 (24.73 / 40.09 dB); (f) P2 (25.99 / 38.24 dB); (g) P22 (26.74 / 38.27 dB); (h) P21 (30.11 / 38.88 dB).

also shows that the MSE given by (12) is very close to that of the
general solution (4) in most cases.

Fig. 3 summarizes portions of the decoded images with dif-
ferent error concealment approaches. The 512 × 512 Lena image
is coded at 1 bit/pixel by the L-CEB coder [11]. Data loss is as-
sumed to be in slice mode, and the loss rate is chosen to be 50%,
as illustrated in Fig. 3 (a). Mean reconstruction method is used in
Fig. 3 (b), (c) and (f) for lost blocks, and various Wiener filters are
used in other cases. The PSNRs of each method with and without
data loss are included in the description of Fig. 3. Vertical neigh-
bors are used to estimate the lost blocks. Family P4 only improves
the PSNR slightly because of the limited correlation among neigh-
boring blocks. However, family P2 makes a huge difference. The
PSNR of P21 is 5.8 dB higher than the standard TDLT and 4.1 dB
higher than P2. Notice that the coding performance of P21 is only
sacrificed by 1.2 dB compared to the best TDLT, making it very
promising for practical application.

5. CONCLUSION

This paper analyzes the error concealment problem of the time-
domain lapped transform from the perspective of estimation the-
ory. The general MMSE solution and various simplifications are
proposed. Design examples and image coding results show that
the reconstruction error can be reduced dramatically. The closed-
form Wiener solutions also lend themselves naturally to adaptive
error concealment, which is a topic of our ongoing research.
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