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ABSTRACT

A joint source-channel coding scheme of t + 2D decom-

posed video sequences and an iterative bit allocation are

presented. The joint source-channel coding scheme con-

sists of a vector quantization and a linear labelling by lattice

constellations minimizing simultaneously the channel and

the source distortion. The channel distortion, due to the lin-

ear labelling, is minimized and depends on the value of the

noise variance and the variance of the source. The iterative

algorithm results in an optimal codebook allocation subject

to a global bit rate and a nonnegativity constraint. The over-

all flexible coding scheme is proved to be very efficient in

noisy environments.

1. INTRODUCTION

Shannon’s theory allows to claim that source coding and

channel coding can be treated/optimized separately. How-

ever, this is achievable only for large block sizes from the

source and the channel sides. This imposes a high com-

plexity which is not convenient for real-time video systems.

To avoid this drawback, a joint optimization of the source-

channel coding provides a realizable solution. The purpose

of a joint source-channel coding approach is to allocate bits

between the source and channels coders in an optimal man-

ner, subject to a constraint, which, in most cases, is the over-

all coding rate. The optimal manner is based on the mini-

mization of the end-to-end distortion subject to the above

constraint.

However, especially in video transmission, the informa-

tion exhibit different layers of importance. In one way, this

can be captured by scalable video codecs based on t + 2D
wavelet decomposition which provide very high coding ef-

ficiency and enable spatio/temporal scalability. In an ad-

ditional way by applying a bit allocation algorithm which

treats efficiently these different layers of importance.

Our joint source-channel coding scheme follows the chan-

nel point of view which means that it is based on the mini-

mization of the channel distortion first followed by the mini-

mization of the source distortion. In [1], it has been proved

that for binary discrete channels, the channel distortion is

minimized if the vector quantization lattice can be expressed

as a linear transform of an hypercube. This work was the

motivation in [2] to find a set of linear transforms which

minimizes the channel distortion, in the same time as the

source distortion for Gaussian sources.

Our formulation is based on the extension of the above

works to the case of video sources, whose distribution is

not Gaussian. The spatio-temporal wavelet coefficients are

encoded by a vector quantization based on a linear labelling.

“Maximum component diversity” lattice constellations are

used to minimize not only the channel distortion but at the

same time the distortion of the video source. No additional

protection by error-correcting codes is necessary.

As the channel distortion is already minimized and its

value is fixed for a given variance of channel noise, an itera-

tive bit allocation algorithm is applied in order to optimally

allocate the bits between the subbands resulting in an ”opti-

mal” codebook allocation. It takes into account the noneg-

ativity constraint of the rate allocated to each subband. An

early attempt to avoid this problem was presented in [5]

where the nonnegativity constraint had been treated. More-

over, in [6] the constraint of a nonegative integer solution

had been proposed.

The paper is organized as follows: in the next section,

we present the structure of our joint source-channel coding

scheme in Section 3 we develop our bit allocation algorithm

and in Section 4 we present some simulation results. Sec-

tion 5 concludes this paper.

2. STRUCTURE OF AN EFFICIENT JOINT
SOURCE-CHANNEL CODING SCHEME

Let a d-dimensional vector xxx be the input of a vector quan-

tizer, producing a n-bit binary codeword, which is the in-

dex of the vector used for signal reconstruction at the re-
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ceiver. The source codebook can be viewed as as function

of (b1...bn) ∈ {+1,−1}n representing the index assigne-

ment. Under the assumption of a maxentropic quantizer,

the total distortion can be expressed as

D = Ds + Dc

where Ds is the distortion due to the quantization and Dc is

the distortion dependent on the index assignement. In [1], it

is proved that for the binary symmetric channel, Dc is mini-

mized by linear labelling. Moreover, in [2] a linear labelling

that minimizes the source distortion Ds is constructed. It is

fully described by a d×n (d ≤ n) matrix GGGd. In the case of

a stationnary, memoryless zero-mean Gaussian source with

variance one and a maxentropic source coding, the linear

labelling represented by the matrix GGGd must transform an

identically distributed random variable into a random vari-

able (the source codebook) which has to mimic the source

distribution.

Let MMMn be an n × n generator matrix of a “maximum

component diversity” lattice constellation as described in

[3]. Its construction is based on the number-field theory

and it is expressed by the standard embeddings in RRRn of the

ideal of ring of totally real subfield of cyclotomic field.

The rows and the columns of MMMn are denoted by Lin

and Cjn respectively, where 1 ≤ i, j ≤ n. If J is some

subset of {1, ..., n}, then Cjn(J) is the truncation of the j-

th column of MMMn according to the subset of indices J . By

means of MMMn one can map linearly BPSKn = {−1,+1}n

on a new set MMMn.BPSKn. Allowing n to increase while

J remains fixed, we get a codebook Sn(J) with codewords:

yn =
∑n

j=1 bjCjn(J) where bbb = (b1, ..., bn)t ∈ BPSKn.

In order to obtain a family of matrices MMMn such that

Sn(J) is an asymptotically Gaussian source dictionnary and

it minimizes Ds as n → ∞, it is shown in [2] that MMMn

must be orthogonal with coefficients going uniformly to 0
as n → ∞. Then the mapping

bbb ∈ BPSKn → (GGGd · bbb ∈ Sn(J))

where GGGd = MMMn(J) is linear, and allows to build a source

dictionnary asymptotically Gaussian.

The matrix GGGd can be constructed as any combination

of rows of the matrix MMMn. Similar properties are achieved

when selecting columns of the matrix MMMn and we shall de-

note by GGG′
r the n × r (r ≤ n) matrices constructed this

way.

However, the distribution of the video sources is not

Gaussian and a direct application of the above vector quan-

tization is not appropriate. Significant modifications have

been made. Thus, in order to take into account the non-

Gaussian source distribution we classify the coefficients in

each subband in two classes and we adapt the quantizer to

each class. This classification of vectors of wavelet coeffi-

cients in the detail frames is based on a stochastic model of

the spatio-temporal dependencies between the wavelet co-

efficients, which we have introduced in [4]. The vectors of

the approximation frames are classified according to their

norm. We find the source codebook for each class of vec-

tors by minimizing the following expression:

min
bbb

E||xxx − βGGGdbbb||2 (1)

where bbb = (b1, ..., bn)t ∈ BPSKn, GGGd is the matrix ob-

tained as explained above and β is a parameter which scales

the lattice constellation to the source dynamics. In order to

find the parameter β and the codebook with vectors

yyy = GGGdbbb, an iterative optimization algorithm is applied.

A similar optimization is applied when using the matrix GGG′
r

for vector quantization.

3. BIT ALLOCATION ALGORITHM

As we have, already, presented due to the linear labelling

the channel distortion Dc is minimized. In the case of hard

decision detection, the Gaussian channel with binary inputs

is transformed into a binary symmetric channel with prob-

ability Q(1/σb), where σ2
b is the variance of the Gaussian

noise. Thus, the channel distortion is:

Dc = 4 · Q(1/σb) · σ2
V Q

where σ2
V Q is the variance of the quantized source. We

checked through simulations that even at low bitrates σ2
V Q

is very well approximated by the variance of the unquan-

tized source.

Consider that a GOF of a video sequence is decomposed

into I spatio-temporal subbands. Let N be the total number

of coefficients in the GOF and nj the number of coefficients

of the subband j, 1 ≤ j ≤ I . σ2
j is the variance of the

subband j. We suppose that all the coefficients in the same

subband are quantized by the same number of bits, thus, let

rj be the bits per coefficient in the subband j.

If we assume that the overload distortion of the quanti-

zation is negligible and under the assumption of high res-

olution approximation, then an approximated model of the

quantization error and in consequence of the distortion of a

subband j can be expressed as:

Dj ≈ σ2
j 2−2ri

As the channel distortion is minimized due to the linear la-

belling, we consider that the distortion that has to be mini-

mized subject to a global bitrate R =
∑I

j=1

rjnj

N is given

by:

min
R

D =
I∑

j=1

Dj =
I∑

j=1

σj2−2ri
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Corresponding to the above constrained minimization

problem, an unconstrained minimization problem using La-

grange multipliers can be stated as:

Jλ = D + λ(
I∑

j=1

rjnj

N
− R)

However, the direct application of this classical method

can lead to very bad results, especially at low bitrates. In-

deed, neglecting the practical requirement that rj ≥ 0 the

“optimal” solution could allow negative values of rj . Our

proposed algorithm avoids the drawback of the negative so-

lutions and changes the criterion in order to take into ac-

count the priority of the solution.

Our bit allocation algorithm is based on the following

steps:

1. Order the subbands by decreasing variance:

+∞ ≥ σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
I ≥ 0

2. Initialize the index of iterations: l = 1

3. Calculate

λl = −2 ln 2 2−
2NR
Ml

l∏
k=1

(σ2
k)

nk
Ml

where Ml =
∑l

i=1 ni

4. If λl satisfies the following inequality:

−2 ln 2 σ2
l < λl ≤ −2 ln 2 σ2

l+1

then set l = l + 1 and go to step 3, else exit.

By this way this algorithm will allocate bits only to the

subbands whose variance is smaller than the variance placed

at the l + 1 position of the order in the first step. The final

result is given by:

rk =

⎧⎪⎨
⎪⎩

N

Ml
R +

1
2

log2

(
σ2

k∏l
k=1(σ

2
k)

nk
Ml

)
, k ∈ {1, · · · , l}

0, k ∈ {l + 1, · · · , I}

4. SIMULATION RESULTS

We consider a temporal Haar decomposition applied on

GOFs of 16 frames, with 4 temporal and 2 spatial resolution

levels. Two cases of temporal decomposition are consid-

ered. Motion-compensated, with full search block match-

ing algorithm and full pel accurancy, and no motion esti-

mation. The spatial multiresolution analysis is based on the

biorthogonal 9/7 filters.

The bit allocation algorithm presented in the previous

section indicates the size of the GGGd or GGG′
r which minimizes

the end-to-end distortion. The choices of the GGGd or GGG′
r are,

however, limited by the complexity and the dependences of

the spatio-temporal coefficients. It is known that the spatio-

temporal coefficients exhibit strong relations with their spa-

tial or spatio-temporal neighbors, thus, in order to capture

these relations, the dimensions d in GGGd or n in GGG′
r should

be even. In addition, in order to keep the complexity low,

we have limited the dimensions n in GGGd and r in GGG′
r to 16.

For our tests we considered CIF (352 × 288) test se-

quences at 30 fps.

The global bitrates per pixel tested are : 0.1bpp, 0.16bpp,

0.33bpp and 0.48bpp. However, due to the additional bits

sended in order to indicate the class where the vectors of

the approximation frames belong to, and due to the coding

of the motion vectors the global bitrate can not be the same

for two different GOFs or sequences.

In Table 1 and Table 2 we present the average PSNR

of two test sequences (“hall-monitor” and “foreman”) on a

Gaussian channel under different noise states and under dif-

ferent bitrates. The decoder uses in all cases a hard decision

criterion.

Fig. 1 illustrates the reconstructed frames of “hall-moni-

tor” at 566.53 Kbs without motion estimation and of “fore-

man” at 1104 Kbs with motion estimation, first in a noise-

less environment and then after transmission over a Gaus-

sian channel with SNR=6.75 dB and SNR=8.0 dB.

We can notice that our joint source-channel scheme glob-

ally presents a good robustness to noise. Moreover, at

SNR=8.0 dB the reconstruction quality already approaches

the noiseless case. Note also that no additional protection

by error-correcting codes is applied. However, for low SNR

the scheme could benefit from the use of a linear block code.

One can remark the gracefull degradation with the noise

level, due to the efficient allocation, and also with the bi-

trate, due to the scalability of the scheme.

5. CONCLUSION

This paper presented a joint source-channel coding approach

of t + 2D decomposed video sequences. An iterative bit

allocation algorithm taking into account the nonnegativity

constraint was proved efficient to the optimal distribution

of the available bits among the spatio-temporal subbands.

It was shown that good video quality can be obtained over

Gaussian channels at low channel SNR for different bitrates.
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Fig. 1. Reconstructed Frames. First Line: “hall-monitor” at 566.53 Kbs without motion estimation. Second Line: “foreman”

at 1104.1 Kbs with motion estimation. Left: reconstructed frame in a noiseless environment. Center: reconstructed frame

over a Gaussian channel with SNR=6.75 dB. Right: reconstructed frame over a Gaussian channel with SNR=8.0 dB.
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