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ABSTRACT

Supervised learning algorithms (relevance feedback (RF)

algorithms) are often used in content based image retrieval

(CBIR) systems to enhance interactive search and brows-

ing of image databases. One of the issues associated with

RF based CBIR systems is the lack of a large training set.

Labeling of images is a time consuming activity and user’s

usually do not have the patience to provide feedback on a

large set. Thus the challenge is to select a “good” small

training set in order to improve the retrieval performance of

CBIR systems. In this paper we propose to use orthogonal

arrays (OA), popularly used in design of experiments, in or-

der to select this set. The property of OA that make them

useful for CBIR systems is that they can be designed with

or without using any prior classification information. We

show that the top k retrieval accuracy increases rapidly as

the number of labeled samples increase.

1. INTRODUCTION

To enhance interactive search and browsing in content based

image retrieval systems (CBIR) systems, supervised learn-

ing algorithms, i.e., relevance feedback (RF) algorithms, are

often used [1]. In a RF based CBIR system, a user provides

feedback on the retrieved images. This feedback, which is

most often of the form “relevant” or “non-relevant”, indi-

cates content that is of interest to a user. Using this feed-

back, an RF algorithm refines the search and attempts to

retrieve increasingly relevant matches. There has been con-

siderable work on both CBIR and RF based CBIR systems.

An extensive review of existing systems appears in [1].

The generalization performance of a supervised learn-

ing algorithm is strongly dependent on the algorithm and on

the quality and amount of labeled training data available [2]

(and references therein). However in many situations find-

ing a large representative labeled training data set is not an

easy task. For example in a RF based CBIR system, the

training set consists of the initial query and the set of re-

trieved images on which the user has provided feedback.

Thus initially the training set is one or two images, and at

each iteration the set is augmented by a small number of

images.

One approach to training supervised learning algorithms

using a small training set is to design the training set using

concepts from the field of design of experiments (DOE) [3].

The primary purpose of this field is to create designs such

that the relationship between a univariate response from the

experiment and several predictor variables may be accu-

rately modeled with an efficient number of design points [3].

A design point is a combination of predictor variables set at

specific values and a trial of an experiment entails measur-

ing the response produced at this design point.

In a CBIR system setting the purpose is to find the re-

lationship between the user’s preferences (response) and a

representation of the images (predictor variables). An ex-

periment would thus consists of finding a efficient num-

ber of images (design points) on which to request feed-

back from the user. This selected set of images could be

dependent on the model being assumed for the relation-

ship between the predictor variables and the response. For

example in active learning, a DOE concept that has been

used in CBIR systems [4, 2], given the current classifica-

tion information, the set of most informative samples, i.e.,

samples that would maximally affect the classification ac-

curacy, is found. Though active learning gives promising

results, it requires prior information (classification informa-

tion) and is hence dependent on the classifier or model, be-

ing used [4, 2].

Even if a model can not be assumed, DOE concepts can

be used to create designs, e.g., space-filling designs, which

spread the design points evenly over the region of inter-

est [5]. An example of a space-filling design is orthogonal

arrays (OA) [6, 5]. Rather than taking all possible combina-

tions of the variables at various levels, OA choses an “op-

timal” fraction of combinations; which not only takes care

of the the effects of the individual variables on the outcome,

but also how the variables interact. OA have been used ex-

tensively in physical experiments and in meta-modeling; see

the book by Hedayat et al. [6] for more details. In settings
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where the number of predictor variables or/and the number

of levels that each variable can take is large, an OA will have

a substantial number of design points. For such scenarios ar-

rays that contain near-orthogonal design points (NOA) can

be designed such that the number of design points is lim-

ited [7].

In this paper we propose to use the concept of OA to

identify a set of images for a RF based CBIR system. This

set of images is provided to the user in order to be labeled

by him/her. In a CBIR system setting, the predictor vari-

able space is the low-level feature space, thus there are large

number of features and each feature takes a large number of

values. Rather than using orthogonal design points (which

may be very large) we propose to use a small number of

near-orthogonal design points that are “spread” in the fea-

ture space. We provide three different algorithms for finding

near-orthogonal design points in a color histogram feature

space; each algorithm leads to a different distribution of the

design points. These algorithms can be easily extended to

the case where more features, such as texture or edge his-

tograms are included in the feature space. We compare these

three algorithms in terms of both their space filling proper-

ties and also their retrieval performance. We show that the

top k accuracy increases rapidly as the number of labeled

samples increase. Though OAs have been used in designing

physical experiments, to the best of our knowledge, this is

the first use of OA in CBIR systems. Note that each pre-

dictor variable can take different number of levels as mixed

OAs can be defined [7].

The learning algorithm that we are using in this paper

has been proposed by us in [2]. In relation to the size of the

image database, the size of the training set is insignificant,

i.e., the number of labeled samples (in the training set) is

much less than the number of unlabeled sample (in the rest

of the database). In this algorithm the role of the labeled and

unlabeled samples are reversed. Implicit class memberships

are assigned to the samples in the unlabeled data set, such

that a classifier trained on these implicitly labeled samples

can classify the explicitly labeled samples, in the labeled

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Table 1. OA with N = 8 run, m = 4 variables, l = 2 levels

of each variable, and strength t = 3.

data set, with maximum accuracy. A classifier is then con-

structed on the basis of the explicitly and implicitly labeled

samples. In the proposed CBIR system a binary classifier,

that can classify the images into relevant and non-relevant

classes, is learned from the feedback provided by the user.

Once the classifier is trained, the top-k most relevant images

are retrieved from the database.

The paper is organized as follows. In section 2 we re-

view some of the related work both on design of experi-

ments and on CBIR systems. In section 3 we present the

proposed RF algorithm, and in section 4 experiments and

results are presented.

2. ORTHOGONAL ARRAYS

An orthogonal array of size N , input variables m, levels l,
and strength s, denoted OA(N, m, l, s), is a m × N ma-

trix D of l symbols such that all the ordered s-tuples of the

symbols occur equally often as column vectors of any s×N
sub-matrix of D [6]. Every OA(N, m, s, t) defines an N -

trial factorial design for m variables each having s levels.

An example of an OA is shown in Table 1.

Each row of the matrix corresponds to a design point

while the column corresponds to a variable. An experiment

is performed with each of the row settings, the outputs ob-

served and inference drawn on the relationship between the

predictor variables and the response. In this design if we

pick any s = 3 columns, we see that each of the possible

combination 000, 001, 010, 011, 100, 101, 110, 111, does ap-

pear and appear the same number of times (once). Thus by

basing the experiment on an OA of strength s we ensure

that all possible combinations of up to s of the variables oc-

cur together equally often. This allows us to investigate not

only the effects of the individual variables (or factors) on the

outcome, but also how the variables interact. The smallest

number of rows that can occur in an OA is dependent upon

the number of variables, their levels, and the strength. The

strength is at maximum set to four invoking the sparsity of

effect principle [3].

In cases where the number of predictor variables is large

and the number of levels is also large, the resulting OAs will

have a large number of design points. In order to reduce

the number of design points substantially, near-orthogonal

arrays [7] can be used. In this array the design points are

chosen such that they are J2 optimal, i.e., let us define a

m × N matrix D = [dik]. Let column k have sk levels; for

1 ≤ i, j ≤ m, let

δij(D) =
N∑

k=1

wjδ(dik, djk) (1)

where δ(x, y) = 1 if x = y and 0 otherwise. Assuming

wi = 1 ∀i, δij(D) value measures the similarity between
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the ith and jth rows of D. Define

J2(D) =
∑

1≤i, j≤m

[δi,j(D)]2 (2)

A design is J2 optimal if it minimizes J2. From the esti-

mation point of view, the difference between NOA and OA

is that in NOA all main effects are still estimable but some

of them are partially aliased with others [7]. Xu [7] has

proposed an algorithm for efficiently finding NOAs. In this

paper we modify and apply this algorithm to identify near-

orthogonal images in a low-level image feature space. This

is discussed in the next section.

3. FINDING NEAR ORTHOGONAL IMAGES IN A
CBIR SYSTEM

The purpose of the algorithms proposed in this section is to

identify a set of near-orthogonal images in a region of in-

terest of the feature space. These near-orthogonal images

will then be provided to the user in order to be labeled; and

based on this labeling the RF algorithm will learn the user’s

preferences. There are different ways in which the region of

interest can be identified, e.g., the top k most relevant im-

ages, or the top k most informative images, etc; we will dis-

cuss this in more detail in the experiments section (sec. 4).

Below we discuss three algorithms for identifying the near-

orthogonal images. The input to these algorithms are the

features of all the images in the region of interest, and the

number of desired near-orthogonal images N . The output is

the identified set of near-orthogonal images.

Algorithm 1 (Algo-1) In this algorithm we first find the

unique values of each feature and sort these values. For each

feature k the number of levels sk is the number of unique

values and a level is the index in the sorted value vector, e.g.

if a feature has values {0.3 0.2 0.4 0.2}, then the number

of levels is 3, and the levels associated with the values are

{0 1 2 1}. For all the features in the region of interest a ma-

trix X is formed, where xij is the level associated with the

feature j of the image i. Initially a random row is selected

from this matrix; then at each step a row that has the mini-

mum J2 distance from the already selected rows is chosen,

till N rows are chosen.

Algorithm 2 (Algo-2) Algo-1 does not take into account

the distribution of points in the region of interest; it assumes

that the points are uniformly distributed over the space and

finds the most dissimilar points in the space. However in

an image database the feature space is not uniformly dis-

tributed; there are clusters and there are outliers. Algo-1

may often pick up outliers and the feedback on these out-

liers may not lead to good generalization performance of

the learning algorithm. In this algorithm we set the weight

wi associated with ith row of X as the the inverse of the

mean distance of the top 10-nearest neighbors of the row

(image) i. Thus a row corresponding to an image in a clus-

ter will have a lower weight, than a row corresponding to an

outlying image. Algo-1 is run to find the N near-orthogonal

images with this weighted J2 metric.

Algorithm 3 (Algo-3) In this algorithm we first dis-

cretize the features in the region of interest such that each

feature can take only a small finite number of levels. There

are many feature discretization algorithms, for an extensive

review see [8]. For each feature we have used a scalar

quantizer with the property that if there are sk bins in the

kth quantizer, then each bin of the quantizer approximately

quantizes 1/sk of the points in the region of interest; i.e.,

each bin of the quantizer contains approximately equal num-

ber of points. These scalar quantizers will partition the n-

dimensional feature space into (approximately) equi-probable

clusters. The centroid of each cluster is found and mapped

to the closest image in the region of interest. Then Algo-1 is

run over the cluster centers to chose centers that minimize

the J2 distance.

4. EXPERIMENTS

In this paper we have tested our algorithm with the Corel

image dataset. We randomly chose ten classes out of the

dataset: Tigers, Cities of Italy, Arabian Horses, English
County Gardens, Cheetahs Leopards and Jaguars, Bald Ea-
gles, Rome, Land of Pyramids, Ocean Life and Interior De-
sign. We have not tried to choose the set of 10 classes to

maximize the inter-class separation, rather they were cho-

sen at random. Each of these classes have about 100 images

for a total of 963 images. For feature extraction we used

a 27-bin HSV space color histogram. We mapped this 27

dimensional vector to a 8 dimensional space using principal

component analysis [9].

Our first experiment is to compare the algorithms pre-

sented in section 3 using space filling measures. Compar-

isons were made with two types of common measures [5]:

one which measure the average distance between design

points ∆dd and one which measures the average distance

between a design point and the top-10 nearest neighbors of

the design point (that are not in the design) ∆nd. The re-

sults are shown in the Table 2, region of interest is the entire

image database. Clearly Algo-2 is able to select reasonably

dissimilar design points that also belong to a cluster.

∆dd ∆nd

Algo-1 0.5397 0.0688

Algo-2 0.1887 0.0620

Algo-3 0.1602 0.0499

Table 2. Space filling measures for design points obtained

through different algorithms.
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Fig. 1. Precision-Recall curve. The mean values across all classes

are plotted. In Active Learning only images that are confusing are

provided to the user to be explicitly labeled. In Algo 1-Algo 3 near-

orthogonal images are used along with active learning to populate

the feedback set.

For each retrieval experiment we randomly divide the

data set into three sets, the labeled data set, the unlabeled

data set and test data set. Samples from the unlabeled data

set are chosen for explicit labeling and the retrieval perfor-

mance is measured over the test data set. The experiments

have been run multiple times for each class to ensure sta-

tistically correct results. The results are shown in Figs. 1-

2. The results of the proposed classifier, without OA, have

been provided in [2] and will not be duplicated here, except

to mention that there is an improvement of about 10-40%

over performance of a learning algorithm that uses only la-

beled images. Fig 1 shows the average (over 10 classes)

top-20 accuracy of the RF algorithm when four different ex-

periments are performed. In Active learning the top-20 most

confusing samples are shown to the user at each iteration to

the user to be labeled by him/her. Confusing is measured

in terms of classification of a sample across a committee of

classifiers [2]. In the other experiments near-optimal images

selected by the different algorithms (presented in section 3)

are chosen to be labeled by the user. For each of these exper-

iments, the region of interest in the first iteration are all the

images that any of the multiple classifiers [2] have found

to be relevant. From the second iteration onwards, when

the classifiers have some classification information, the re-

gion of interest are all the images that the multiple classifiers

disagree on, i.e., find confusing. The results show that the

retrieval performance of near-orthogonal images found by

Algo-2 is the best. In Fig. 2 the top-20 results per class are

shown for the experiment where NOA selected by Algo-2

are used.

In this paper we have shown that a “good” feedback set
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Fig. 2. Top-20 Accuracy for each class for the experiment that

uses NOA (Algo-2) with active learning. The bar represents the

mean result while the line segment on the bar shows the variance.

The first bar for each class is obtained with 100 labeled points;

similarly the second, third , and fourth are obtained using 200,

300, and 400 labeled points respectively.

for RF based CBIR systems can be chosen using DOE con-

cepts such as OA. This is particularly useful when there is

little or no classification information available. We are cur-

rently working on a more extensive of experiments with a

larger feature space.
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