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ABSTRACT

New MR acquisition techniques are enabling fast acquisi-
tion of data from an entire 3D volumes. Parallel MR imag-
ing methods can provide additional acceleration to the data
acquisition rate. However, the large computational memory
requirements associated with 3D imaging requires new ef-
ficient reconstruction techniques. This manuscript presents
an efficient implementation of SPACE-RIP for the rapid re-
construction of sub-sampled 3D MR data. Uniform sub-
sampling effectively decouples the SPACE-RIP linear sys-
tem of equations into a number of smaller systems which
can each be solved independently, thus requiring fewer
computational resources. We present a particular phase-
encode sampling pattern to capitalize on this effect which
allows SPACE-RIP to be computationally competitive with
SENSE in 3D imaging, while providing the added benefits
of self-calibrated coil sensitivity maps and improved artifact
suppression through irregular sub-sampling.

1. INTRODUCTION

In the pursuit of reduced MR image acquisition times, a
number of image reconstruction methods have been pro-
posed. Parallel imaging methods achieve this goal by dis-
tributing the data acquisition burden across multiple re-
ceiver coils and then sub-sampling during data acquisition
to reduce the total image acquisition time. The strength of
these reconstruction methods is the ability to suppress alias-
ing artifacts in the reconstructed image that arise from sub-
sampling along the phase-encode dimension.

To reconstruct an image from sub-sampled multi-coil
data, SPACE-RIP [1] constructs a large linear system of
equations. The large number of parameters in the linear
system gives SPACE-RIP greater freedom in reconstruc-
tion regularization approaches and an unlimited choice of
phase encode lines to acquire. This is significant because re-
constructions from variable density data have significantly
fewer aliasing artifacts than images formed from uniform
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down-sampled data. Variable density phase-encoding also
allows one to obtain self-referenced coil sensitivity esti-
mates for use in reconstruction.

The penalty for solving such a large system of equations
is high computational cost. In the particular case of 3D MR
imaging, the SPACE-RIP linear system can be prohibitively
large — often exceeding the physical memory capacity of
most (reasonably priced) modern computer systems. In
this work, we use the fact that uniform sub-sampling of
the phase-encoding decouples the SPACE-RIP linear sys-
tem into a group of smaller, independent systems. We have
shown earlier [2] that this decoupled form of SPACE-RIP
is in fact analytically equivalent to the popular SENSE [3]
method.

In 3D imaging, this decoupling allows the SPACE-RIP
problem to again be reduced to a number of smaller prob-
lems. In this manuscript, we describe a method to re-
duce the computational load of 3D SPACE-RIP, by effi-
ciently solving the system constructed with irregular sub-
sampling along one phase encode direction, and uniform
down-sampling along the other. We demonstrate that the
combination of irregular and uniform sub-sampling respec-
tively along two phase encoding dimensions provides sig-
nificantly better aliasing artifact suppression compared to
2D SENSE for 3D imaging [4] at the same speedup factor,
while maintaining comparable reconstruction times.

2. METHODS

All parallel MR imaging methods aim to reconstruct an im-
age of the excited spin distribution from down-sampled data
acquired using multiple coils. The signal acquired in each
coil, l, can be described by

sl(k) =
∫

V

Wl(r)ρ(r)ej2πk·rdr + η(k). (1)

where ρ(r) is the excited spin density function throughout
the volume V , r is the spatial position in the field of view
(FOV), Wl(r) is the coil sensitivity at point r, k is a recip-
rocal spatial term corresponding to the gradients employed
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during data acquisition, k = γ
∫ τ

0
G(t)dt, and η(k) is ad-

ditive noise in the received signal.
This signal representation is typically discretized to solve

the inverse problem computationally. As originally pre-
sented, Cartesian SENSE [3] imposes a uniform down-
sampling pattern. Based on the subsequent aliasing pat-
tern, one can then construct a small system for each spatial-
domain pixel in the acquired data reference frame. Solv-
ing this small system gives un-aliased spatial-domain pix-
els. This process is then repeated for each pixel in the FOV.
In Space-RIP [1], an FFT is performed along one dimension
to consider each column of the FOV in turn. This results in
a large linear system

s̄ = Pρ̄ + η̄ (2)

where the vector s̄ contains the output data from all coils
for a single column, ρ̄ is one column in the (reconstructed)
image, η̄ represents additive noise, and P is a system matrix
constructed from knowledge of the phase-encoding pattern
used and the coil sensitivity estimates. As with any linear
system, one can alternatively frame the reconstruction as a
minimization problem

min
ρ̄

‖s̄ − Pρ̄‖2, (3)

with the possibility of adding regularization terms as well.
One can take the derivative of this cost function to yield the
associated normal equations.

PH s̄ = PHPρ̄. (4)

Below, we use this normal equations representation of the
parallel MR image reconstruction problem to expose effects
of various sub-sampling choices on the analytic structure of
the problem.

2.1. The structure of the SPACE-RIP matrix

In 2D MR imaging, the SPACE-RIP linear system, s̄ = Pρ̄,
can be described by [2]⎡

⎢⎢⎢⎣
s1(:, x)
s2(:, x)

...
sL(:, x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

PHdiag{W1(:, x)}
PHdiag{W2(:, x)}

...
PHdiag{WL(:, x)}

⎤
⎥⎥⎥⎦ ρ(x, :). (5)

where associated with each coil l, there is a length M vector
of acquired data, sl(:, x), corresponding to particular col-
umn x in the reconstructed image, and an N -by-N diagonal
matrix, diag{Wl(x, :)}, which contains the coil sensitivity
estimate, Wl(x, :), associated with column x along the main
diagonal. The elements of the M -by-N matrix P H corre-
spond to the exponential term in (1), P (n, ky) = e−jkynτ ,
where each row of P H corresponds to a particular phase

encode ky . We note here that the columns of P (and rows
of P H) correspond to columns of the discrete Fourier trans-
form operator, and are mutually orthogonal.

In the case of 3D imaging, the SPACE-RIP system ma-
trix, P, can again be represented compactly as a stack of
matrices, each of the form[

(QH ⊗ P H)diag{vec{Wl}}
]

(6)

where Wl is the spatial sensitivity estimate for coil l for
the entire slice, and the rows of QH and P H correspond
to the Fourier encoding harmonic terms, ejγ(Gh

r nτ), induced
by phase encode h and gradient direction Gr. ⊗ refers to the
Kronecker product. In 3D imaging, phase-encoding occurs
along two dimensions of the FOV, and QH and P H each
correspond to the sampling pattern along one of those phase
encoding dimensions.

2.2. Uniform sub-sampling and the normal equations

As was originally shown in [2], the normal equations
perfectly illustrate the aliasing operator that results when
phase-encode sub-sampling is employed. Consider the fol-
lowing 2D example. Using the system matrix in Eq. (5) for
P, one finds

PHP =

[(
PPH

) ◦
(

L∑
l=1

Wl(:, x)Wl(:, x)H

)]
(7)

where ◦ represents an element-by-element matrix product.
In this form, the interaction between the selected phase en-
codes and the coil sensitivities is readily apparent. The outer
product PP H acts as a projection matrix onto the subspace
defined by the selected phase encodes.

Thus, when uniform sub-sampling by the f , the system
matrix

PHP
∣∣∣
2D uniform

= [(1f⊗IN/f )◦(
L∑

l=1

Wl(:, x)Wl(:, x)H)]

(8)
can be permuted into a block diagonal matrix. Each block
of this permuted normal-equations representation can be
solved independently. We refer to this result as a decou-
pling of the normal equations system matrix through the
use of uniform sub-sampling. We have shown previously
in [2] that this decoupled form is analytically equivalent to
the Cartesian SENSE [3] method for sub-sampled parallel
MR data reconstruction.

In the case of irregular sub-sampling along the phase en-
code direction, this decoupling behavior no longer exists.
The structure of PP H gains significant complexity and one
is unable to permute PPH into a block diagonal matrix.
Thus, in the case of irregular sub-sampling, it is advan-
tageous to examine each column in the 2D image recon-
struction problem as a single large system. Creating a large
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system matrix effectively captures the impact of the sub-
sampling pattern employed, its effect on the data acquisi-
tion process, and gives greater freedom in regularization and
greater control of aliasing artifacts. Thus, there is significant
motivation to study irregular sub-sampling approaches. In
the case of 3D imaging, the combination of irregular and
uniform sub-sampling along two separate coordinate axes
provides a significant benefit as we demonstrate below.
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Fig. 1. Structure of normal equations when uniform sub-
sampling is employed along (a) both phase encoding direc-
tions, and (b) only one phase encoding direction.

2.3. Decoupling the 3D problem

In the case of 3D imaging, one can employ this decoupling
effect along either or both phase-encoded dimensions. In
the case of uniform down-sampling along both phase en-
code directions, the normal equations system matrix be-
comes:

PHP
˛̨
˛
3D uniform−uniform

=
h
((1f ⊗ Im/f ) ⊗ (1g ⊗ In/g)) ◦

(
LX

l=1

vec{Wl}vec{Wl}H)
i
,

whose sparse structure is shown in Fig. 1(a). It is this
linear system structure that 2D-SENSE [4] exploits to re-
construct 3D parallel data. Similarly, employing irregular
down-sampling along one phase encode direction and uni-
form down-sampling in the other, the block-matrix structure
is retained, but each block looses the (1g ⊗ In/g) structure
present before. Specifically,

PHP
˛̨
˛
3D uniform−irregular

=
h “

(1f ⊗ Im/f ) ⊗ (PP H)
”
◦

(

LX
l=1

vec{Wl}vec{Wl}H)
i
.

The sparsity structure of this matrix is given in Fig. 1(b) for
the case of a 16-by-16 pixel image, sub-sampled by 2 along
each phase encode direction. Computational savings result
from the fact that the solution to each of these decoupled
systems can be found independently, then be used collec-
tively to solve the complete 3D SPACE-RIP linear system.

3. RESULTS

We demonstrate this approach on full 3D volume four-coil
data acquired on a 1.5T GE Signa MR scanner with coils ar-
ranged circumferentially around the volunteers head. To test
our 3D SPACE-RIP reconstruction methods using various
different sampling patterns, 1-by-1-by-1 mm3 isotropic res-
olution images covering the entire 3D FOV were acquired
using a high-resolution 3D Fast Spin Echo sequence [6].
with no acceleration. The acquisition required 10.4 minutes
to fill a 160-by-192-by-256 k-space cube with data sam-
ples. To allow reasonable time for a full 3D SPACE-RIP
reconstruction, one axial slice from this k-space data was se-
lected, and sub-sampled by 2 to form a 80 pixel by 86 pixel
reference image.

Our efficient image reconstruction approach was tested
by exchanging an irregular sub-sampling for uniform sub-
sampling along both phase encode directions. The irregular
sampling pattern employed a phase encode selection guided
by the relative energy density in k-space, sampling densely
at the lower k-space frequencies and more sparsely at the
high frequencies.

The acquisition speed-up factor (4x) was equivalent in
all cases. Fig. 3 shows the reconstruction and aliasing ar-
tifacts present for reconstructions of simulated acqusition
data for (a) a uniform-uniform, (b) irregular-uniform, and
(c) irregular-irregular sub-sampling strategies. For refer-
ence, the full resolution image in shown in Fig. 2. The
aliasing artifacts present in each reconstruction are shown
to the right of the reconstructions, normalized to the maxi-
mum artifact level of all three images. Note that the use of
irregular sampling significantly reduces the appearance of
aliasing artifacts.

Fig. 2. Image reconstructed with no acceleration. Boxes
show the regions used for the SNR estimation in all recon-
structed images.

On a SUN Ultra-80 with 4GB RAM, the 2D-SENSE
reconstruction of case (a) required 28.1 sec. The com-
putation time to reconstruct the efficient SPACE-RIP case
(b) was longer, 74.7 sec, but significantly shorter than the
time to solve the full SPACE-RIP problem (c), 7228.7 sec
(≈ 2 hours).
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Fig. 3. SPACE-RIP Image reconstructions based on (a)
uniform-uniform, (b) irregular-uniform, and (c) irregular-
irregular downsampling patterns.

Note that the use of irregular downsampling improves
SNR performance. To measure SNR, following the method
in [8], two 7-by-7 pixel regions were selected (shown in
Fig. 2): one covering tissue, and one outside the tissue re-
gion. The location of the boxes was chosen based on rel-
atively uniform signal intensity and the absence of signif-
icant aliasing artifact. The ratio of signal power to noise
was estimated by calculating the mean intensity of the pix-
els in the tissue-covering-box, divided by the standard devi-
ation of the signal intensity in the null-signal-box. The table
below displays the estimated SNR for each of the recon-
structed images. Clearly, irregular downsampling improves
the SNR of the reconstructed image.

Phase-encode sampling pattern SNR
uniform-uniform 6.935126
irregular-uniform 13.330072
irregular-irregular 19.931803
no acceleration 66.219387

Estimated SNR for each reconstruction method.

4. SUMMARY

We have presented an efficient SPACE-RIP implementa-
tion for the rapid reconstruction of multi-coil 3D FSE data.
Using the fact that uniform downsampling effectively de-
couples the SPACE-RIP linear system of equations,we pro-
pose using a hybrid phase-encoding pattern to capitalize
on this effect in 3D MR imaging: irregular sub-sampling
along one dimension and uniform sub-sampling along the
second phase encode dimension. Each of the small decou-
pled systems formed by this downsampling pattern can be
each solved independently requiring a significantly smaller
computational footprint. This approach allows SPACE-RIP
to be computationally competitive with SENSE in 3D MR
imaging. This choice of phase encoding pattern provides
the added benefits of improved artifact suppression from ir-
regular downsampling and allows the use of self-calibrated
coil sensitivity estimates if desired.
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