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ABSTRACT

Functional magnetic resonance imaging (fMRI) is a pow-
erful tool for studying brain function, especially related to
disease and aging. One of the major tasks of fMRI data
analysis is to find a few specific regions involved in certain
functionality by studying huge but noisy 3-dimensional spa-
tial plus 1-dimensional temporal data. Therefore, develop-
ing simple and reliable signal/image processing algorithms
for fMRI data analysis is very important. In this paper, we
systematically study how fractal scaling analysis can help
us reliably detect brain activity through fMRI data analy-
sis. We examine two types of fractal analysis, the fluctua-
tion analysis (FA) and detrended fluctuation analysis (DFA).
We show that while FA is able to readily distinguish active
brain regions from in-active ones, it fails to robustly recog-
nize which active regions in the brain are truly involved in
certain task. On the other hand, we show that DFA is very
effective for this task.

1. INTRODUCTION

In the past decade, functional magnetic resonance imaging
(fMRI) has emerged as a powerful non-invasive tool for
studying brain function. fMRI works as follows: increas-
ing in brain metabolism by mental processes (e.g., related
to neural activities) initiates a cascade of biochemical re-
actions, resulting in changes of hemodynamic parameters –
blood flow and blood oxygenation. The change in hemo-
dynamic parameters in turn alters the measured magnetic
resonance signal. This is referred to as blood oxygenation
level dependent (BOLD) contrast [1]. fMRI data comprise
of time series for about 104 ∼ 105 small volumns, called
voxels, of the brain. The task is then to infer brain ac-
tivity by analyzing time series in these voxels. This is a
huge task, however, since the data are 4-dimensional, of
huge size(Gbytes), and noisy. For example, if chance of
making a mistake in any one voxel is 1%, then one expects
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100 ∼ 1000 errors in every brain map. This may approach
the number of truly active voxels in the brain. To appreciate
the complexity, we note that some BOLD response signals
may not be task-related, but induced by motion or physio-
logical processes in the brain. For simplicity, we shall call
the latter by “motion artifacts” in the remain of the paper.

In recent years, tremendous effort has been made to de-
velop novel signal/image processing algorithms for analyz-
ing fMRI data [2–11]. The most popular method used in
fMRI data analysis assumes a linear transformation between
neural activity and BOLD contrast signals, plus a Gaussian
noise residue. Recently, it is found that the residue may
not be Gaussian, but a fractal signal [4]. It has been found
that BOLD contrast signals without involving any assigned
mental task are also fractal-like [12]. Interestingly, by ap-
plying fluctuation analysis (FA) and wavelet multiresolution
analysis to high temporal resolution fMRI data, it has been
shown that the fractal feature of voxel time series can be
utilized to separate active and inactive brain regions [5, 6].
However, it is unclear whether fractal analysis can help dis-
tinguish motion artifacts from true BOLD responses. In this
paper, we quantitatively examine how effective fractal scal-
ing analysis are, including fluctuation analysis (FA) [5] and
detrended fluctuation analysis (DFA) [13], in distinguish-
ing among three types of voxels, noise, motion artifacts,
and true BOLD responses. We shall show that while FA
is able to readily distinguish active brain regions from in-
active ones, it fails to robustly recognize which active re-
gions in the brain are truly involved in certain task. On the
other hand, we show that DFA is very effective for this task.

The rest of the paper is organized as follows. We briefly
describe FA and DFA in Sec. 2. In Sec. 3, we examine
the effectiveness of FA and DFA in distinguishing the three
types of voxels, true BOLD responses, motion artifacts and
noise. Finally, we make a few concluding remarks in Sec. 4.

2. FA AND DFA OF FMRI DATA

Before discussing FA and DFA of the fMRI data, let us
briefly describe the data first. The fMRI data were acquired

II - 1370-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



0 100 200 300 400

−5

0

5

0 10 20
−0.5

0

0.5

1

0 100 200 300 400

−5

0

5

0 10 20
−0.5

0

0.5

1

0 100 200 300 400

−5

0

5

0 10 20
−0.5

0

0.5

1

(a) (b)

(c) (d)

(e) (f)

S
ig

na
l I

nt
en

si
ty

 ∆
I/I

0 (
%

)
S

ig
na

l I
nt

en
si

ty
 ∆

I/I
0 (

%
)

S
ig

na
l I

nt
en

si
ty

 ∆
I/I

0 (
%

)

Time (seconds)

S
ig

na
l C

ha
ng

es
 (

%
)

S
ig

na
l C

ha
ng

es
 (

%
)

S
ig

na
l C

ha
ng

es
 (

%
)

Time (seconds)

Fig. 1. Representative time series and the corresponding
hemodynamic responses of the three types of voxels: (a, b)
true BOLD response, (c, d) motion artifact, and (e, f) noise.
The dash-dot lines in (a,c,e) indicate the instants when a star
flashes. The sampling time is 1.7s.

with a 3T Allegra head-only scanner (Siemens) using a Gra-
dient-Echo Echo Planar Imaging (GE-EPI) (echo time =
30ms; repeat time = 1.7s; flip angle = 70◦; resolution =
64 × 64). The data were collected from motor tasks. The
experimental protocol involves a subject pressing a button
with the index finger of the right hand three times per event
in synchronization with a visually presented flashing star.
For each event, the star flashes for 1.7s, followed by variable
intervals (i.e., 13.6, 15.3, 17 or 18.7s) with only static scene.
The instants when a star flashes are indicated in Fig. 1(a,c,e)
by vertical dash-dot lines. Also shown in Fig. 1 are typ-
ical time series (Fig. 1(a,c,e)) and hemodynamic response
functions (the so-called impulse response functions, IRFs)
(Fig. 1(b,d,f)) for the three kinds of voxels, noise (bottom),
motion artifacts (middle), and true BOLD responses (top).
IRFs were obtained directly from a widely used software
AFNI [14]. It is commonly assumed that the voxel time se-
ries is generated by the convolution of average neural activ-
ity and the IRF. We observe from Fig. 1(a,c,e) that the time
series of the noise voxel has the smallest amplitude, while
the motion artifact’s time series has a few very high peaks.

Now, let us continue to describe FA. Let x(i), i = 1, · · · ,
N denote our voxel time series. We form the “random
walk” process y(n), n = 1, · · · , N by removing the mean
value x̄ and forming partial summation, y(n) =

∑n
i=1[(x(i)−

x̄]. We then examine whether the following scaling-law
holds or not,

F (m) =
〈|y(i + m) − y(i)|2〉 ∼ m2H , (1)
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Fig. 2. FA for the three types of voxels. (a, b) true BOLD
responses, (c, d) motion artifacts and (e, f) noise.

where the average is taken over all possible pairs of (y(i +
m), y(i)). The parameter H is often called the Hurst param-
eter [15]. When the scaling law described by Eq. (1) holds,
the process under investigation is said to be a fractal pro-
cess. In fact, when Eq. (1) holds, the autocorrelation for the
“increment” process, defined as x(i) = y(i + 1) − y(i),
decays as a power-law, r(k) ∼ k2H−2, as k → ∞,
while the power spectral density (PSD) for y(n) is Sy(f) ∼
1/f2H+1. When H = 1/2, the y(i) process is similar to the
standard Brownian motion (Bm), and the increment process
is similar to the white Gaussian noise (Gn). Generalizations
of Bm and Gn are called fractional Brownian motion (fBm)
and fractional Gaussian noise (fGn) [15], characterized by
0 ≤ H ≤ 1, H �= 1/2. When 1/2 < H ≤ 1, a fBm is said
to have persistent correlations, while when 0 ≤ H < 1/2, a
fBm is said to have anti-persistent correlations.

In Fig. 2, we show six representative FA curves for each
type of the voxels, true BOLD responses (Fig. 2(a, b)), mo-
tion artifacts (Fig. 2(c, d)) and noise (Fig. 2(e, f)). We ob-
serve that the true BOLD responses have the largest H val-
ues, followed by the motion artifacts, and the noise voxels
have the smallest values.

Finally, we discuss applying DFA to the fMRI data. We
also work with the random-walk-type process y(n). DFA
works as follows. First, one divides the time series into
�N/m� non-overlapping segments (where the notation �x�
denotes the largest integer that is not greater than x), each
containing m points; then one calculates the local trend in
each segment to be the ordinate of a linear least-squares fit
for the random walk in that segment, and computes the “de-
trended walk”, denoted by ym(i), as the difference between
the original walk y(i) and the local trend; finally, one exam-
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Fig. 3. DFA for the three types of voxels. (a, b) true BOLD
responses, (c, d) motion artifacts and (e, f) noise.

ines if the following scaling behavior (i.e., fractal property)
holds or not:

Fd(m) =<
m∑

i=1

ym(i)2 >∼ m2H (2)

where the angle brackets denote ensemble average of all the
segments and Fd(m) is the average variance over all seg-
ments. For ideal fractal processes, it has been found that FA
and DFA yield equivalent results. In practice, DFA often
works more reliably, since it can remove certain trends and
nonstationarity.

Fig. 3 shows six representative DFA curves for the three
types of the voxels, true BOLD responses (Fig. 3(a, b)), mo-
tion artifacts (Fig. 3(c, d)) and noise (Fig. 3(e, f)). We ob-
serve that the true BOLD responses have much larger H
values than the motion artifacts and the noise voxels. By
comparing Figs. 2 and 3, we find that the H values ob-
tained by DFA is always larger than those by FA. This in-
dicates that the data may indeed be nonstationary or have
certain trends.

3. EVALUATION OF FRACTAL SCALING
ANALYSIS FOR IDENTIFYING BRAIN ACTIVITY

In this section, we examine how effective FA and DFA can
be used to distinguish among the three types of voxels, true
BOLD responses, motion artifacts and noise. For this pur-
pose, three databases, each containing 400 voxels and con-
sisting of only one type of voxel, were prepared, by fo-
cusing only on some regions of interest (ROI), such as pri-
mary motor cortex (M1), sensorymotor cortex (SMC), sup-
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Fig. 4. (a) The sensitivity and specificity curves of H for the
true BOLD response and the motion artifacts in the ROI, (b)
the ROC curve.

plementary motor area (SMA), premotor cortex (PM), su-
perior parietal cortex (SPC) and so on. Then we apply FA
and DFA to all the time series in these databases. Consis-
tent with Figs. 2 and 3, we observe that the H values for
noise are always much smaller than those of true BOLD
responses by either FA or DFA, thus it is quite easy to dis-
tinguish noise from true BOLD responses by either method.
The more challenging task is to distinguish between true
BOLD responses and motion artifacts. It is found that for
FA, the PDFs of H for the true BOLD responses and the mo-
tion artifacts overlap significantly. This indicates that FA is
not very effective in recognizing which active regions in the
brain are truly involved in certain task. On the other hand,
DFA is quite effective for this purpose. Fig. 4 shows the
sensitivity and specificity curves of H for the true BOLD
response and the motion artifacts and the receiver operating
characteristic (ROC) curve by applying DFA in the ROI.
A usual choice of H is the one that makes the sensitivity
and specificity of H equal, and we obtain the value of 0.7.
With this optimal threshold for H , we observe the proba-
bility of detection PD = 0.87 and the probability of false
alarm PFA = 0.13.

Based on the statistics we obtain from the ROI, we ap-
ply DFA on the voxel time series of the whole brain. Fig. 5
shows four representative slices of the brain activation map-
ping. We observe clear activations in the areas of SMA, PM,
M1, SMC and SPC of the brain. These are the areas that are
highly expected by neuroscience experts.

Before ending this section, we emphasize that the thresh-
old for H is largely subject independent, and the method
developed here applies to fMRI data of different subjects
equally well.

4. CONCLUDING REMARKS

In this paper, we have systematically studied how fractal
scaling analysis can help us reliably detect brain activity
through fMRI data analysis. We have quantitatively ex-
amined the effectiveness of FA and DFA in distinguishing
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Fig. 5. Brain activation mapping of the fMRI data by DFA.

among the three types of voxels, noise, motion artifacts, and
true BOLD responses. It is found that while FA is able to
readily distinguish active brain regions from inactive ones,
but is not very effective for recognizing which active regions
in the brain are truly involved in certain task. On the other
hand, by applying DFA on the fMRI data, we obtain a high
probability of detection of 0.87 in distinguishing motion ar-
tifacts from true BOLD responses. Hence, DFA is very ef-
fective for distinguishing true BOLD responses, motion ar-
tifacts, and noise. More importantly, the threshold for H is
largely subject independent, and the method developed here
applies to fMRI data of different subjects equally well. This
strongly suggests that the approach proposed here may be
developed into an automated method for identifying brain
activity.

It is interesting to note that the voxel time series for mo-
tion artifacts are more spiky than those for true BOLD re-
sponses. The accuracy of the identification of brain activity
could be greatly improved by using DFA-based multifractal
analysis. We will carefully look into this in the near future.
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