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ABSTRACT

Processing of bulk microscopy video data requires 

automated tracking of rolling leukocytes in the hundreds to 

compute a rolling velocity distribution, which is an 

indispensable descriptor in inflammation research and anti-

/pro-inflammatory drug testing. However, for any automated 

tracking method to be successful, an automated validation 

process must exist to accept or reject the output of tracking. 

In this paper, we propose an automated validation technique 

that first generates a spatiotemporal image from the cell 

locations output by a tracking method; then, it segments the 

spatiotemporal image to detect the presence or absence of a 

leukocyte by employing an edge-response filter followed by 

an active contour method. The proposed direction sensitive 

edge-response filter, the maximum absolute average 

directional derivative (MAADD), computes the magnitude 

of the mean directional derivative over an oriented line 

segment and chooses the maximum of all such values within 

a range of orientations of the line segment. Our validation 

experiments show that the proposed method is successful in 

93% of the trials using manual tracking, in 83% using 

correlation tracking and in 84% using active contour 

tracking method. 

1. INTRODUCTION 

The velocity distribution of rolling leukocytes (activated 

white blood cells moving significantly slower than the blood 

flow) is a critical tool for inflammation studies and for anti-

/pro-inflammatory drug testing [5]. Hundreds of leukocytes 

must be tracked from intravital microscopy videos to 

compute the velocity distribution. Automated methods are 

preferred since manual tracking methods are extremely 

tedious, time consuming, and often prone to bias. The 

efficacy of such automated tracking methods is typically 

measured by comparing the tracking outputs to “ground 

truth,” i.e., manual measurements, as for example, see 

[1],[8]. Since the goal of any automated tracking technique 

is to avoid the manual data collection, the automated tracker 

outputs must be validated as a part of an automated data 

acceptance process in the absence of ground truth data. 

The aim of this paper is to propose an automated validation 

method that accepts or rejects a spatial track-path obtained 

by joining the leukocyte center locations output by a 

tracking method. The proposed validation technique is based 

on spatiotemporal image analysis [9]. A 2D spatiotemporal 

domain is conceived by the spatial track-path and time 

(video frame number) as two orthogonal axes. A 2D 

spatiotemporal image is created by interpolating the 

intravital video intensity on the aforementioned 

spatiotemporal domain. Given this spatiotemporal image, 

the hypothesis of our validation method is: if the tracker is 

able to follow a rolling leukocyte, then the spatiotemporal 

image will have a “trace” of that rolling leukocyte and the 

tracker computed centers will be lying within the trace. A 

rolling leukocyte “trace” may be defined as a thin, 

elongated, inclined stripe on the spatiotemporal image with 

two continuous edges that delineate the stripe from its 

background. A trace indicates that a rolling leukocyte was 

present in the video sequence over a period of time. To 

validate a track-path we detect the leukocyte trace, if any, 

and check if the tracker computed centers lie within the 

detected leukocyte trace. 

In detecting the leukocyte trace we utilize an active contour 

or snake- [4] based segmentation method preceded by a 

filtered edge-response from the spatiotemporal image. The 

proposed nonlinear edge-response filter, the maximum 

absolute average directional derivative (MAADD), 

computes the magnitude of the mean directional derivative 

over an oriented line segment; then, the operator chooses the 

maximum of all such values within a range of orientations 

of the line segment. The active contour then uses the output 

of the MAADD, a filtered image gradient magnitude, as the 

external force for capturing the cell trace. 

2. PROPOSED METHOD 

The proposed validation method is comprised of three 

essential steps – (a) generating a spatiotemporal image from 

tracker output cell center coordinates, (b) obtaining filtered 

edge-response from spatiotemporal image via MAADD, and 

(c) detecting a leukocyte trace within the spatiotemporal 

image by active contour based segmentation applied on the 

MAADD edge-response. In this section we elaborate the 

technical details of these steps. 
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2.1. Spatiotemporal Image Generation 

In order to obtain the spatiotemporal image containing 

leukocyte trace, we create a path in 3D by joining the cell 

location coordinates through time (using the x, y coordinates 

and video frame number). Figure 1 (left) shows such a path 

in 3D. Figure 1 also shows the spatial track-path, which is 

the 2D projection of the 3D path on the image domain. Let 

the coordinates of the starting point (cell location at the 

beginning of tracking) of a spatial track-path be (x1,y1). Let 

d(x,y) denote the distance of any point (x,y) on the spatial 

track-path from (x1,y1) measured along the spatial track-

path. We create a 2D spatiotemporal image where the 

horizontal axis corresponds to the distance d(x,y), and the 

vertical axis corresponds to time, i.e., the image frame 

number. The gray values for this spatiotemporal image are 

obtained from the video sequence– if the tracker output at 

time instant (frame number) t is (xt,yt), then the voxel (3D 

pixel) value at location (xt,yt,t) from the video is assigned to 

the pixel location (d(xt,yt),t) on the spatiotemporal image. 

A practical construction method for the spatiotemporal 

image considers at every discrete point on the spatial track-

path a straight line orthogonal to the image plane. The 

maximum number image frames in the sequence is the 

height of each of these 1D image columns. Placing the 1D 

image columns side-by-side in the same order as they stand 

on the spatial track-path a spatiotemporal image is obtained 

where two orthogonal axes are the number of image frames 

and the distance measure d(x,y). In this case d(x,y)

represents number of discrete points on the spatial track-

path starting the count at (x1,y1). Figure 1 (right) shows a 

spatiotemporal image formed on the spatial track-path. In 

this case the tracker was able to track the leukocyte. 

Consequently, a leukocyte trace with unbroken edges 

appears. The Figure also shows the overlaid locus (d(xt,yt),t)

of the tracker for t running from 1 through the maximum 

number of frames in the sequence. The overlaid locus 

(d(xt,yt),t), which we refer to as spatiotemporal track-path, is 

seen to be intersected by the leukocyte trace throughout its 

stretch.

We exhibit some example spatiotemporal images in Figure 

2. The leftmost image in Figure 2 shows a spatiotemporal 

image corresponding to a leukocyte appearing darker than 

the background. The second from left image in Figure 2 

shows a change of contrast – the leukocyte first appears 

darker than the background, then it gradually turns brighter. 

In both these cases the spatiotemporal track-path is seen to 

be completely inside the unbroken leukocyte traces. In the 

third image from left in Figure 2, the tracker has tracked a 

leukocyte for a while, then it has jumped to another 

leukocyte (shown by an arrow on the image) and has tracked 

the latter cell for the rest of the sequence. This loss of the 

correct cell is visible in the spatiotemporal image– the 

leukocyte trace is broken. The fourth image from left in 

Figure 2 depicts a situation where the tracker follows the 

leukocyte, but it is significantly off the leukocyte center 

throughout. The fifth image from left in Figure 2 shows the 

tracker being able to track the leukocyte for some time, then 

moving away (shown by an arrow) from the leukocyte for 

the rest of the sequence. The rightmost image in Figure 2 

shows an extreme case where the tracker loses the leukocyte 

in the beginning of the sequence, and consequently no trace 

is observed in the spatiotemporal image. 

2.2. MAADD Pre-filtering 

Once a spatiotemporal image is generated, the subsequent 

tasks are to detect the leukocyte trace (if existing) and then 

to verify if the tracker computed cell centers (or equivalently 

the spatiotemporal track-path) are within the trace. In Figure 

3 we show the gradient magnitudes of the spatiotemporal 

images of Figure 2. We observe that images are corrupted 

by mostly horizontal streaks. Also the trace edges appear to 

be broken in some places in Figure 3. These two 

characteristics of spatiotemporal images are the principal 

impediments towards segmentation by conventional 

methods, e.g., the watershed method [10]. Thus before 

extracting the trace, we suppress noise and bridge the gaps 

within the trace borders via the following filter: 

|))sin(),cos((
2

1
|

21

max),(
−

++
≤≤

=
R

R
drryrx

dp

dI

R
yxg θθ

θθθ
      (1) 

For each θ∈[θ1,θ2], the filter (1) first computes the 

magnitude of image directional derivative 
dp

dI
 averaged 

over a (straight) line segment of length 2R ( ],[ RRr −∈ )

and orientation θ. The directional derivative is computed 

along a direction p perpendicular to the line segment, i.e., p

makes an angle 2/πθ +  or 2/πθ −  with the x axis. The 

filter then chooses the maximum of all the averaged 

directional derivative magnitudes; hence, this is essentially a 

nonlinear order statistic filter. We refer to the filter (1) as the 

maximum absolute average directional derivative 

(MAADD). MAADD suppresses unwanted edges in the 

spatiotemporal images as illustrated in Figure 4. One 

prominent example of edge-bridging and unwanted streak 

suppression is the fourth image from left in Figure 4. Since 

the leukocyte traces extend diagonally in a spatiotemporal 

image, we first compute the angle (ω) the diagonal of the 

image makes with the base of the image. Then we set [θ1,θ2]

as [ω-π/8, ω+π/8], noting by extensive observation that a 

leukocyte trace edge direction in a microvenule does not 

exceed the angular range of π/4. 

2.3. Active Contours for Trace Detection 

After we obtain the MAADD edge-enhanced image of a 

spatiotemporal image, we employ a region growing method 
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to delineate the leukocyte trace. The region growing method 

is a natural choice in this case because we assume that the 

initial point of the spatiotemporal track-path to be correct 

being at the beginning of tracking. Using this initial point as 

a “seed,” we grow a region guided by the MAADD edge-

response to delineate an entire leukocyte trace. However, 

region growing techniques such as the watershed method 

[10] fail to delineate the entire trace, because of its high 

sensitivity to feeble ridges formed on the edge surface. For 

this reason, we execute region growing via a parametric 

active contour that can be regularized or tuned to ignore 

weak edges [7].

The parametric active contour is a deformable contour, 

(X(s),Y(s)) parameterized via s∈[0,1] the movement of 

which on the image plane is governed by the following 

partial differential equation (PDE) [4]: 
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First two and the third term in the right hand side of (2) 

express respectively the internal and the external force. α
and β are non-negative weights respectively for resistance to 

stretching and resistance to bending. (u(x,y),v(x,y)) is the 2D 

vector field playing the role of the external force. In (2) the 

active contour is treated as a function of (pseudo) time τ,

and the desired contour position is given by the steady state 

solution of (2) starting from an initial contour. 

To increase the capture range of a snake, Xu and Prince 

propose a 2D force field called gradient vector flow (GVF) 

via diffusion of the gradient forces [11]. GVF attracts the 

initial contour towards an edge from a large distance. When 

the initial active contour is arbitrarily located inside the 

target object, imposing a Dirichlet boundary condition (BC) 

on the GVF PDE can effectively grow the snake to delineate 

the  target object that GVF alone (without the Dirichlet BC) 

cannot always achieve [6], [7]. A snake from a “seed” initial 

location can be grown within the framework of the 

following Enhanced GVF (EGVF) PDE framework: 
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where Ω denotes the image domain, C denotes the domain 

enclosed by the initial or seed active contour (assumed to be 

a circle), Ω \C denotes the set difference of Ω and C, ∂Ω
and ∂C are respectively the boundaries of Ω  and C, and n∂C

and n∂Ω  are unit outward normal to the boundaries ∂C and 

∂Ω  respectively, µ is a non-negative parameter controlling 

the smoothness of the vector field, λ is a positive parameter 

(Dirichlet BC), and g is an edge strength indicator. 

After we compute g via (1), we utilize it in solving (3). Once 

we obtain the EGVF field (u,v) from (3), we utilize the 

vector field in (2) for snake evolution. The initial contour (a 

circle) is taken at a bottom corner of a spatiotemporal image 

that is specified by the starting point of a spatiotemporal 

track-path. The segmentation process is achieved in multiple 

stages, as the single seed growth has been observed to be 

insufficient to capture long and thin leukocyte traces. Once 

the active contour stops evolving a new seed point is chosen 

at the segmentation boundary point, which is (1) above the 

previous seed point, and (2) has minimum MAADD value 

among all the boundary points of the growing segment. 

Then a new EGVF field is constructed based on the new 

seed and the active contour from the new seed is grown. 

This process is allowed to continue until one of the 

following happens: 

(C1) the growing segment reaches the top 

spatiotemporal image border (see Figure 5 for example) 

or

(C2) the growing segment no longer includes any trace 

edge. This situation is detected as soon as the MAADD 

value at the growing segment falls below a threshold Tg

(see Figure 6 for example). 

In order to select the threshold value Tg we assume that the 

leukocyte trace has a step edge of height µ, and the image 

noise is uncorrelated zero-mean Gaussian noise. It is then 

possible to show that the MAADD has a normal distribution 

N(µ,σ), when the MAADD is computed at trace edge; for 

off-trace-edge MAADD is N(0,σ) distributed. The standard 

deviation σ is related to the noise standard deviation and the 

segment length (2R) employed in MAADD. We then apply 

the likelihood ratio test [2], which sets the threshold value: 

Tg =µ/2. µ is estimated by the mean MAADD values on the 

trace edge obtained from the initial few stages of the 

growing segmentation. Segmentation results for images in 

Figure 4 are given in Figure 7. 

3. VALIDATION TRIALS 

Validation experiments are performed on the outputs of 

three trackers – (a) manually marked cell centers, (b) active 

contour [8] tracking, and (c) correlation tracking [1]. 

Tracking data set consists of 75 rolling leukocytes (each 91 

frames long, 3 seconds duration, 30 frames per second) from 

in vivo animal experiments. To minimize jitter introduced by 

the breathing of the living subject, video frames are 

registered [3] prior to performing the validation 

experiments. If a tracker computed cell center is within one 

cell radius of the manually detected cell center, then the 

frame is considered ‘tracked’ [8]. When a tracker is able to 
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track a leukocyte on at least 61 frames (2 seconds), the 

tracker output can be accepted for leukocyte velocity 

computation [8]. Table 1 illustrates performance of the 

validation trials. The proposed validation technique accepts 

70 manual tracks out of 75. Out of 49 acceptable tracks 

produced by the snake tracker, the proposed validation 

method (correctly) accepts 40 and (wrongly) rejects 9. On 

the other hand, out of 26 unacceptable tracks produced by 

the snake tracker, the validation method correctly rejects 23 

and wrongly accepts 3. Similar interpretations are there for 

the third row of Table 1 with correlation tracking method. 

To demonstrate the efficacy of MAADD in the proposed 

validation technique, we apply the same active contour 

segmentation method without using it: we replace g(x,y) in 

(3) by 2|),(|),( yxIyxf ∇= . Table 2 shows the validation 

performance without using MAADD that is observed to be 

inferior compared to the performance shown in Table 1. 
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Figure 1. (left) Tracker output in 3D and projected 2D spatial 

track-path. (right) Spatiotemporal image, and overlaid 

spatiotemporal track-path. 

Figure 2. Different spatiotemporal images and overlaid 

spatiotemporal track-path (for descriptions see the text). 

Figure 3. Gradient magnitudes of image in Figure 2. 

Figure 4. MAADD response for images in Figure 2. 

Figure 5. Segmentation stopped by criterion (C1). 

Figure 6. Segmentation stopped by criterion (C2). 

Figure 7. Segmentation of images in Figure 4 obtained by the 

proposed active contour method. 
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