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ABSTRACT
Although a vast number of publications have appeared on image reg-
istration, performance analysis is usually performed visually and lit-
tle attention has been given to statistical performance bounds. Such
bounds can be useful in evaluating image registration techniques, de-
termining parameter regions where more successful registration is pos-
sible, and choosing features to be used for the registration. We derive
Cramér-Rao bounds for a wide variety of geometric deformation mod-
els including translation, rotation, shearing, rigid, more general affine
and non-linear transformations, and for intensity distortion and geo-
metric deformation simultaneously. Numerical examples for illustrat-
ing the analytical performance bounds are presented.

1. INTRODUCTION

Image registration is the process of matching two images that differ in
certain aspects but essentially represent the same object. The images
to be registered may be obtained using different viewpoints, sensors,
or time instants. Many engineering problems involve such cases, in-
cluding motion detection where images taken at different time instants
need to be registered, target recognition where images taken from dif-
ferent viewpoints should be combined, video processing where differ-
ent frames should be registered for more efficient compression. Other
application areas are 3-D modeling where 2-D images must be inte-
grated to construct a 3-D model; medical imaging where combining
information from different modalities is useful since each of them may
have certain advantages, as well as registering images taken at differ-
ent time instants to analyze tumor growth or regular child growth. In
some of these applications the deformation itself is of interest, for ex-
ample in motion estimation or tumor growth, whereas in others defor-
mation analysis is required only to correct or align the images, such as
combining medical images obtained using different modalities.

There are excellent tutorials on image registration including [1]
focusing on geometric registration, [2] discussing intensity matching,
and [3], which presents a well-organized classification of image regis-
tration algorithms.

In this paper we formulate the image registration problem as a sta-
tistical parameter estimation problem and derive Cramér-Rao bounds
(CRB’s) as performance measures. The CRB is a lower bound on the
covariance of any unbiased estimator and is asymptotically achieved
by the maximum likelihood (ML) estimator. It is an important bench-
mark performance measure that can be used to evaluate the efficiency
of registration algorithms, to determine the parameter regions where
good and poor estimates are expected, and to optimize image registra-
tion by selecting the features to be used. The CRB is widely studied
in statistical signal processing areas, such as communications, radar,
sonar, and biomedicine. Image registration literature lacks the study
of this important bound except for a very limited deformation model
(only translation) in the context of motion estimation [4]. This pa-
per aims to fill this gap by deriving CRB expressions for a wide class
of geometric deformation models including translation, rotation, scal-
ing, shearing, rigid, more general affine and non-linear transformations
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shown in Figure 1, and for the case where the intensity distortion and
geometric deformation occur simultaneously. In Section 2 we present
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Fig. 1. Illustrations of geometric deformations. Part (a) shows the
original image, (b) translation, (c) rotation, (d) skew, (e) rigid, (f)
affine, and (g) non-linear transformations.

the image registration problem as a parameter estimation problem and
give two basic frameworks: registration using (i) isolated points in
Section 2.1 and (ii) the images as the features to be used in registration
in Section 2.2 for geometric registration, and 2.3 for simulateneous in-
tensity and geometric registration. We refer to these isolated points as
simply “points” in the rest of the paper. We also derive CRB’s using
these two frameworks in Section 2. The maximum likelihood esti-
mates (MLE’s), their variances, and extensions to unknown real-world
objects are given for some of the cases in [5]. We give numerical ex-
amples in Section 3 for easier visualisation of the analytically derived
bounds. Section 4 has conclusion and discussion.

2. PROBLEM FORMULATION AND PERFORMANCE
ANALYSIS

Let p be a real-world object of interest, and f and g two functions that
represent the images to be registered of this object. The coordinates
x′, y′, z′ of the image f are geometrically deformed versions of the
coordinates x, y, z of the image g:

(x′, y′, z′) = (Dx(x, y, z), Dy(x, y, z), Dz(x, y, z)), (2.1)

where Dx, Dy, Dz represents operators that map the coordinates (i.e.
operate on coordinates and result in transformed coordinates). The
intensity of the image f is also distorted resulting in the image g. Let
H represent an operator which alters the intensity values of the image,
then the overall relationship between the images f and g is

g(x, y, z) = H{f [Dx(x, y, z), Dy(x, y, z), Dz(x, y, z)]}, (2.2)

Here, H operates on the geometrically distorted image changing its in-
tensity values and resulting in the other image. The image registration
problem is estimating Dx, Dy, Dz , and H according to some criterion
using parametric models for the unknown geometric deformation and
intensity distortion between f and g.

2.1. Registration Using Isolated Points

Many registration algorithms use isolated points to find the geometric
distortion [6], [7] and then determine the optimum intensity matching
using geometrically aligned images. Let � = [p1, p2, . . . , pl]

T repre-
sent the l points corresponding to l features of p, � = [f1, g2, . . . , fl]

T
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be the corresponding isolated points of f , and � = [g1, g2, . . . , gl]
T

the isolated points of g representing the same l features. In this frame-
work � and � are the observations (hence random functions due to
measurement noise) and � is the real-world coordinates set (assumed
to be deterministic.) Assuming a global geometric deformation (i.e.
the same deformation for all isolated points), the statistical model is[ F3×l

G3×l

]
=

[
I3×3

D3×3

]
P3×l +

[
03×l

�3×1 ⊗ 11×l

]
+ N, (2.3)

F =

[
f1x flx

f1y . . . fly

f1z flz

]
,G =

[
g1x glx

g1y . . . gly

g1z glz

]
,P =

[
p1x plx

p1y . . . ply

p1z plz

]
,

t = [tx, ty, tz ]
T

, (2.4)

where the subscripts of the block matrices denote their dimensions,
the subscripts “ij” of the points denote the jth component (x, y or
z) of the ith point, I is the identity matrix, 0 a matrix with all zero
entries, 1 a matrix with all one entries, “⊗” the Kronecker product,
D the geometric deformation, tx, ty, tz the translation, and finally N
is a 6 × l matrix denoting additive noise. This noise is assumed to
be white Gaussian and independent for different points and directions.
It is allowed to have different variances along different directions with
covariance. Let � be the unknown parameters that define the geometric
deformation and intensity distortion and Pθ (f, g) the probability den-
sity function of the random functions f and g given �. The CRB ma-
trix CRB(�) for the unknown parameters is the inverse of the Fisher
information matrix (FIM) denoted by J(�) [8]:

CRB(�) = J−1(�), (2.5)

Jij(�) = −E

[
∂2 log Pθ (f, g)

∂θi ∂θj

]
, (2.6)

where Jij(�) denotes the ijth entry of J(�), θi the ith component of
�, and E[·] denotes the expectation operator. We derive expressions for
the FIM and CRB matrices for a wide class of geometric deformations.
All of the derivations follow three main steps: (i) finding log Pθ (f, g),
(ii) taking the partial derivatives, (iii) calculating the expectation.

We present the general form of log Pθ (f, g) here, omit the special
forms and also refer the reader to [5] for the resulting FIM and CRB
matrices. Considering the model in (2.3) we have

log P
θ
(f, g) =

l∑
i=1

[
(fix − pix)2

−2σ2
x

+
(fiy − piy)2

−2σ2
y

+
(fiz − piz)2

−2σ2
z

]

+

l∑
i=1

[
(gix − six)2

−2σ2
x

+
(giy − siy)2

−2σ2
y

+
(giz − siz)2

−2σ2
z

]
+const., (2.7)

where[
six

siy

siz

]
= D

[
pix

piy

piz

]
+

[
tx

ty

tz

]
, i = 1, . . . , l. (2.8)

Note that the first and last terms in (2.7) do not involve deformation
parameters; hence, they become zero in computing the CRB because
of the derivatives with respect to the parameters in step (ii). Taking the
derivatives and expectation gives the ijth element of FIM

Jij =
1

σ2
x

l∑
i′=1

∂si′x
∂θi

∂si′x
∂θj

+
1

σ2
y

l∑
i′=1

∂si′y
∂θi

∂si′y

∂θj

+
1

σ2
z

l∑
i′=1

∂si′z
∂θi

∂si′z
∂θj

.

(2.9)

We use equation (2.9) to calculate the FIM’s and CRB’s for a wide
class of geometric deformations using the described framework. The
MLE’s for some of the deformation parameters and expressions of
their variances are also given in [5]. We also extend to unknown �

and observe how the bounds change for some of the cases.

2.2. Geometric Registration Using Images

In this case no pre-processing is made on the images to extract the
features; hence, we do not know the corresponding points. We also
note that the two images will not have the same domain as explained
in detail in [2]. Here, we will consider the overlapping domain sets
of the two images. It is not possible to obtain explicit expressions for
the MLE’s since the unknown parameters are hidden in the coordi-
nates and a search is necessary to find the maximum of the likelihood
function.

We assume that the intensity values are not altered except for the
additive noise. The statistical model we use is

f(x, y, z) = p(x, y, z) + n(x, y, z), (2.10)

g(x, y, z) = p(x′, y′, z′) + n(x, y, z), (2.11)

where x′, y′, and z′ are the transformed coordinates and n(x, y, z) is
the additive noise. The unknown parameters are hidden in x′, y′, and
z′: ⎡

⎣ x′

y′

z′

⎤
⎦ = D

[
x
y
z

]
+

[
tx

ty

tz

]
. (2.12)

Using the short-hand notation for the image coordinates � = (x, y, z)
and �′ = (x′, y′, z′) our observations are now f(�), g(�) and the
term log Pθ (f, g) is

log Pθ (f, g) =
∑
�

[f(�) − p(�)]2 + [g(�) − p(�′)]2

−2σ2
+ const.

(2.13)
Here, the summation

∑
� is over all the coordinates of the overlap-

ping domain of the two images. The first term does not depend on the
unknown parameters and becomes zero during the derivative operation
when calculating the FIM. We need to take the derivative of a function
of three variables (�′) which are all functions of the elements of �.
Hence, we use the chain rule

∂p(�′)
∂θi

=
∂p(�′)
∂x′

∂x′

∂θi
+

∂p(�′)
∂y′

∂y′

∂θi
+

∂p(�′)
∂z′

∂z′

∂θi
. (2.14)

Computing the derivatives using (2.14) and then taking the expecta-
tions gives the ijth element of the FIM for 3-D:

Jij = E

[
∂2 log P

θ
(f, g)

∂θi∂θj

]
=

−1

σ2

∑
r

[
p
2
x(r

′
)
∂x′

∂θi

∂x′

∂θj

+px(r
′
)py(r

′
)
∂x′

∂θi

∂y′

∂θj

+ px(r
′
)pz(r

′
)
∂x′

∂θi

∂z′

∂θj

+p
2
y(r

′
)
∂y′

∂θi

∂y′

∂θj

+ px(r
′
)py(r

′
)
∂y′

∂θi

∂x′

∂θj

+ py(r
′
)pz(r

′
)
∂y′

∂θi

∂z′

∂θj

+ p
2
z(r

′
)
∂z′

∂θi

∂z′

∂θj

+ py(r
′
)pz(r

′
)
∂z′

∂θi

∂y′

∂θj

+ px(r
′
)pz(r

′
)
∂z′

∂θi

∂x′

∂θj

]
.

(2.15)

where the subscripts “x, y, z” denote partial derivatives with respect
to x, y, z respectively. These derivatives of p can be calculated by first
interpolating the discrete image and then using the resulting interpo-
lated continuous function for direct derivative calculation. It is also
possible to approximate the derivatives using the difference function.
The resulting FIM and CRB matrices for translation, rotation, rigid,
skew, affine and bi-variate polynomial transformations can be found
in [5].

2.3. Simultaneous Intensity and Geometric Registration

Consider two images where one of them is both intensity distorted and
geometrically deformed version of the other. The model becomes

f(�) = p(�) + n(�), (2.16)
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g(�) =
∑
�iεSh

H(�i)p((� − �i)
′) + n(�), (2.17)

where (�−�i)
′ denotes the geometrically transformed version of (�−

�i): ⎡
⎢⎣ (x − ix)′

(y − iy)′

(z − iz)
′

⎤
⎥⎦ = D

⎡
⎣ x − ix

y − iy
z − iz

⎤
⎦ +

⎡
⎣ tx

ty

ty

⎤
⎦ . (2.18)

The function log Pθ (f, g) becomes

log Pθ (f, g) =
−1

2σ2

{∑
�

[f(�) − p(�]2

+
∑
�

[g(�) −
∑
�iεSh

H(�i)p((� − �i)
′)]2

}
+ const.

(2.19)

We calculate expressions of the FIM components in three groups: (i)
components of geometrical deformation parameters, (ii) components
of intensity distortion parameters, (iii) cross-components between ge-
ometrical deformation and intensity distortion parameters.
(i) Components of geometrical deformation parameters: These will
have the same form as in the geometric deformations (Section 2.2)
except p(�′) will be replaced by∑

�iεSh

H(�i)p((� − �i)
′).

The FIM expressions will then be similar to those of the geometric de-
formations, except the image will be filtered by H before the derivative
operations. This result implies that the estimation accuracy of the ge-
ometric distortion parameters suffers from smaller values of the filter
coefficients. This is eventually a result of decreased SNR.
(ii) Components of intensity distortion parameters: The FIM compo-
nents of the intensity distortion parameters are

Jha,hb =
1

σ2

∑
�

p((� − �a)′)p((� − �b)
′). (2.20)

This FIM shows that more correlated image pixels result in better es-
timates of the filter coefficients.
(iii) Cross-components between geometrical deformation and inten-
sity distortion parameters: In this case we will have the first derivative
with respect to the geometrical deformation parameters and the second
derivative with respect to the intensity distortion parameters; hence,
the FIM expressions will not be similar to any of the previous cases.
These can be obtained using equation (2.5).

3. NUMERICAL EXAMPLES

We use basic examples to calculate and plot the CRB’s and MLE vari-
ances that are analytically derived in Section 2 for better visualisation.
These plots illustrate the analytical results of Section 2.

3.1. Registration Using Isolated Points - Geometric Deformations

We use isolated points that are uniformly distributed on the image
in both directions (x and y) and several parameters are varied as ex-
plained in the following.
2-D Rotation: There is only one unknown parameter α resulting in
a scalar CRB. We plot this CRB as a function of the rotation angle
for the case of equal and different variances along x and y directions.
Figure 2 shows the CRB on the rotation angle for σ2

x = 1, σ2
y = 3;

σ2
x = 1, σ2

y = 2; and σ2
x = 1, σ2

y = 1. In this figure we have

used points that form a 5 × 5 grid resulting in twenty-five points.
Observe that the CRB approaches a constant as the variances along
x and y directions become closer. We also plot the variance of the
MLE as a function of number of points and compare it with the CRB
in Figure 3(d) for α = 60deg. The MLE variance asymptotically
achieves the CRB as expected. 2-D Affine Transformations: The un-
known parameters are � = [d1, . . . , d6]

T. We have 12 CRB compo-
nents; however, none of these depends on the deformation parameters.
Therefore, we plot them as a function of the number of points. We
present the plots for only d1, d2, and d3 since the others have similar
forms. Figures 3a-c show the diagonal CRB components and corre-
sponding MLE variances, and part (d) shows three cross components
CRBd1,d2 , CRBd1,d3 , CRBd2,d3 . Parts (a)-(c) show how the MLE
variances approach CRB values as the number of points gets larger.
Observe also that the CRB components for d3 (which is the transla-
tion parameter) are smaller than those of d1 and d2.

3.2. Registration Using Images - Geometric

We use two images where one of them has an image derivative with
larger intensity values so that we can observe the effect of the image
derivatives on the CRB’s (see Section 2.2.) We approximate the image
derivatives using the difference between the pixels. In Figure 4a, we
plot CRBα,α, CRBs,s, CRBtx,tx using a 2-D rigid transformation.
The first row shows the two images used, second row the CRB on the
rotation angle, third row for the scaling parameter, and fourth row for
the translation parameter along x direction. First column shows the
bounds for the first image and second column for the other image. We
observe that the CRB values for the first image are larger. This can be
explained partly by the fact that the first image has smaller derivative
values compared with the second image (the second image changes
more rapidly).

3.3. Registration Using Images - Simultaneous

We use a low-pass filter to model the intensity distortion and observe
the effect of simultaneous intensity and geometric registration on the
CRB on the geometric deformation parameters (see Section 2.3 for
details.) The low-pass filter we choose is

H =
1

9

[
1 1 1
1 1 1
1 1 1

]
. (3.21)

We plot the same set of CRB components as in Section 3.2 in Figure
4b. Observe that the simultaneous estimation of the filter coefficients
increases the CRB values for the geometric deformation parameters.

4. CONCLUSION

We have derived statistical performance bounds for image registration
algorithms. For some of the cases we have derived also the expressions
for the MLE’s and their finite-sample variances. We have considered
a wide class of geometric deformations, intensity distortion using an
MA model, as well as simultaneous geometric deformation and inten-
sity distortion. We summarize the results below, see [5] for a more
detailed discussion.

For registration using isolated points, The bounds on the variances
of the translation parameter estimates (when the deformation model
is translation only) depend only on the number of points but not on
the amount of translation of the locations of the points. The CRB’s
are twice as large when we include the estimation of the locations of
the points. The variances of the MLE’s are equal to the CRB values
for any number of points. Better estimates can be obtained for the
rotation angle (if the deformation model is rotation only) when the
points are further from the rotation center. The bounds are independent
of the rotation amount for the case of equal noise variances for the
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x and y directions. For rigid transformations (scaling, rotation, and
translation), better estimates are obtained for the rotation angle when
points further from the rotation center are used for the case of equal
noise variances for all directions. Larger scaling values degrade the
performance of the estimation of the rotation angle. The bound on
the variance of the scaling parameter is independent of the amount of
scaling. For 2-D skew, the bounds for the shear parameters along the
two directions are decoupled. The bounds depend only on the number
and locations of the points used but not on the shear amount. The
MLE variances are equal to the CRB components. The bounds for the
parameters of affine and bi-variate polynomial transformations (2-D
and 3-D) are independent of the parameter values, but depend only on
the points and noise variances.

For registration using images, the bounds for all geometric defor-
mation parameters depend on the values of the deformation parameters
in contrast to some of the cases of registration using isolated points.
For the case of simultaneous registration considering both geometric
deformation and intensity distortion, the bounds for the estimates of
the geometric deformation parameters suffer from smaller filter coef-
ficients. This is related to decreased SNR as a result of smaller filter
coefficients.

As a future work it is possible to compare the CRB’s to the perfor-
mances of standard methods, such as information-based or intensity-
similarity-based methods. It would also be useful to derive the confi-
dence intervals for easier visualization. Another direction is to con-
sider the registration of video frames, and exploit the fact that the
deformation (e.g. motion of a certain object in the video) is corre-
lated in time. In this case, iterative estimation can be applied and the
performance analysis for this case is of interest. It would also be in-
teresting to search for distance metrics other than mean-squared error.
For instance, the error for the rotation angle may be represented using
covariance of vector angular error [9]. The performance bounds will
then be on these metrics rather than conventional mean-squared error.
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