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ABSTRACT

This paper describes an algorithm for the restoration of a
noisy blurred image based on support vector regression. The
blind image deconvolution was formulated as a machine
learning problem. From the training set, the mapping be-
tween the noisy blurred image and the original image are
learned by support vector regression (SVR). With the ac-
quired mapping, the degraded image can be restored. Our
approach was experimentally compared with the adaptive
Lucy-Richardson maximum likelihood (ML) algorithm. In
terms of ISNR (Improvement of Signal to Noise Ratio),
SVR outperformes ML in blind deblurring tests in which
the types of blurs, point spread function (PSF) support, and
noise energy are all unknown.

1. INTRODUCTION

The primary objective of image restoration is to restore the
visual quality of a degraded image. It has important appli-
cations including photographic deblurring, remote sensing
and medical imaging. Blurring may be caused by degrada-
tions in the imaging process such as lens defocusing, atmo-
spheric turbulence, object motion, or diffraction.

In many imaging applications, an observed discrete im-

age g(x,y) can be approximated as the sum of a two-dimensional

convolution of the true image f(z,y) with a linear shift in-
variant blur, also known as the point-spread-function (PSF),
h(z,vy), and additive noise 7(x, y). That is

g(m,y) = f(xay) * h(x7y) + n(xvy)
Z f(n,m)h(m -—ny-— m) + 77(%29)

(n,m)

z,y,n,me Z

in which * denotes the two-dimensional linear convolution
operation, and Z is the set of the integers and 7 denotes
the additive noise. The problem of recovering the true im-
age f(z,y) from the degraded image g(z,y) is called im-
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age deconvolution or image restoration. Classical restora-
tions require complete knowledge of the blur and a statisti-
cal description of the noise to be known prior to restoration.
However, it is often impossible to determine these parame-
ters a priori. This is due to a variety of practical constraints
such as the difficulty of characterizing atmospheric turbu-
lence in aerial imaging or the potential health hazard of us-
ing a stronger incident beam to improve the image quality
in X-ray imaging. In these situations, blind image deconvo-
lutions are essential to recover visual information.

Many blind restoration algorithms have been proposed
in the past, as surveyed in [1]. The iterative blind decon-
volution algorithm was first proposed by Ayers and Dainty
in 1988 [2]. The double iteration algorithm developed by
Holmes et al [3], was based on the EM algorithm. The
EM algorithm is an efficient image restoration algorithm
and has been widely used in many applications under dif-
ferent names such as “Lucy” and “Richardson” (LR), etc.
[4, 5]. The original Lucy-Richardson algorithm is a non-
linear algorithm derived from Bayesian considerations, and
based on the knowledge of the point spread function (PSF).
This algorithm ensures the positivity of the image and the
conservation of its total energy. Some recent work [6, 7]
includes a variational approximation for Bayesian blind im-
age deconvolution, which assumes that the PSF is partially
known. Thus, a probabilistic law relating the observations
and the quantities to be estimated can be formulated.

Blurs can be quite different mathematically in terms of
their coefficients and the PSF support and different appli-
cations might dictate that the noise energy might be quite
different. However, they all share some common character-
istics. For example, they are all effectively low pass filters.
Our approach for blind image deblurring seeks to extract
the commonality behind the seemly diverse blurs. Once we
can acquire that knowledge, we might be able to establish
a common usable framework that can handle different blurs
with different PSF supports. In this way, the blur identifica-
tion is side-stepped. We use support vector regression [8] to
obtain an optimized mapping that takes an ensemble of de-
graded images to the true images in the training phase; then
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in the test phase, the learned mapping is used to perform the
blind image deconvolution.

The paper is organized as follows. In Section 2, lin-
ear regression is first reviewed followed by a discussion of
support vector regression and the details of our algorithm.
In Section 3, the implementations and the numerical exper-
iments of our approach are reported. The performance is
evaluated using SNR. Conclusions are discussed in Section
4.

2. SVR BASED IMAGE DEBLURRING

Fig. 1. Linear regression.

Given training data (X1;v1), - . ., (Xi; vi) in Fig. 1, where
X are input vectors and y; are the associated output value
of X, traditional linear regression finds a linear function
WT X + b such that (W;b) is an optimal solution of

1
min

nin > (yi — (W' X; +1))? M

i=1

In other words, W7 X + b approximates training data by
minimizing the sum of square errors. Usually n, the dimen-
sion of X is less than /, the number of the points. Otherwise,
a line passes through all the points and overfitting occurs.

If the data is nonlinearly distributed, a linear function
will not work. In these cases, we can map the data to a
higher dimensional space by a function ¢(x) as in support
vector classification. To avoid overfitting, some modifica-
tions are adopted. Support vector regression solves the fol-
lowing modified optimization problem:

l

1
in —WTW +C i+ & 2
Jmin S Z}ﬁ &) )
subjectto  y; — (WTo(X;) +b) <e+&,

(WTH(Xi) +b) —yi < e+,
51)5: 2077’:177l

&; is the upper training error (£ is the lower training error)
subject to the e—insensitive tube |y — (W7 ¢(X) +b)| < e,
and e is a threshold.

For blind image deconvolution, the 2n + 1 by 2m + 1
neighborhood of the blurred image pixel g(z,y) is:

g(x —n,y —m) g(x —n,y+m)
9(x,y)

g(x+n,y—m) g(x+n,y+m)

The matrix is converted either by row or by column into
a vector. For example, (g(z — n,y —m),...,g(x —n,y +
m),...,g(z,y),...,g9(x+n,y—m),...,g(x+n,y+m))
(row by row). This vector becomes X for the support vec-
tor regression. y; is the corresponding pixel of f(z,y). By
shifting this sampling window over all positions of the en-
semble of the blurred images, we can obtain the training set
for the support vector regression.

When features are in different numerical ranges, those
in larger ranges may dominate the others. Thus, a proper
scaling of the features before training can be very important.

3. EXPERIMENTS

3.1. SVR set up

As mentioned in the previous section, scaling is a very im-
portant preprocessing. In all the experiments, the images are
scaled into range [0,1] before they are blurred. The original
LENA image (512 by 512) is blurred with moving average
filters with different support (3 by 3 and 4 by 4). Gaussian
white noise is added to the two blurred images to obtain
the noisy blurred images used for training of the SVR. The
SNR of the noisy blurred images are 12.09 and 11.91 re-
spectively. The LibSVM software package [9] is used with
a radial basis function kernel to find ¢(x).

In our experiment, n = 3,m = 3. Thus the size of
the sampling window is 7 by 7. The length of the vec-
tor is 49. The 7 by 7 sampling window is shifted over the
blurred images. The training sets are constructed from the
pairs (X; f(z,y)). Since a low contrast patch has less of a
contribution for the SVR to find the mapping between the
blurred image and the true image, we only select patches
whose contrast (variance) is above a certain threshold. To
further speed up the training, the training set is randomly
downsampled to 39 % of the original training set.

3.2. Robustness to untrained blurs

The rectangular averaging, Gaussian (¢ = 1), motion blurs,
circular averaging filters, and Gaussian noise are applied to
the cameraman image (256 by 256) to make the test images.
None of these filters is identical to the ones in the training
set.
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Table 1. ISNR (db) comparison of PCA and ML for differ-
ent blurs and noise

Blurs SVR | ML

Circular average (v = 3,SNR=12.55) | 2.34 | -0.59
Motion (L = 5,0 = 0,SNR=11.88) | 2.63 | -0.54
Gaussian (5 x 5,SNR=13.58) 1.96 | -1.64
Average (4 x 3,SNR=13.23) 229 | -1.42

We use signal to noise ratio (SNR) to measure the degra-
dation caused by blur and noise. SNR is defined as:

S Y (f(i9))?
S SN (F6 ) — 90, ))2

The well established measurement of restoration quality
is the Improvement in Signal to Noise Ratio of the image
(ISNR). The formula for ISNR is then given as

S SN (G g) — g6, 9))?
ISNR =101 ! J - 4
O SN SN (i) — 1(29))?

The trained ¢(X) is used to perform the deconvolution
of the the images. For comparison purpose, the images are
also deblurred using the Lucy-Richardson maximum likeli-
hood (ML) algorithm. The ML algorithm requires an initial
guess of the blur PSF. When the PSF is specified, its size
and the values it contains must be estimated. The size has
been observed to be more important to the ultimate success
of the restoration than the actual values in the PSF. Since
3 by 3 and 4 by 4 averaging filters are used to train SVR,
the initial PSF are specified as a 3 by 3 averaging filter and
a 4 by 4 averaging filter. The better results of the two are
used in the comparison against SVR. The performance of
the ML is very sensitive to the number of iterations. An im-
proper number of iteration leads to over-convergence, and
too many artifacts in the image. In all the experiments, when
the default iteration number (10) gives a bad result, we man-
ually choose a different iteration number for ML to produce
a better result. The results are summarized in the table 1.

The radius v of the circular averaging filter is 3. The
motion filter corresponds to a camera horizontal motion of
5 pixels. For all the experiments, SVR always improves the
image quality in terms of ISNR; while the ISNR for the ML
are always negative. Observe that none of the blurs used in
the testing were used in the training. Although the last line
in the table is averaging filter, the PSF support is different.
This experiment highlights an advantage of our proposed al-
gorithm: SVR can perform blind deconvolution in the sense
that the blurring filters do not appear in the training set and
thus they do not need to be known. The knowledge about

the PSF support of the blurring filter is needed to make ML
work well. Also ML degrades in the presence of noise.

3.3. Real image example

Fig. 3 shows the comparative results on a real motion blurred
image. The blur was caused by nonlinear motion of the ob-
ject. Noise is obviously amplified in the ML deblurred im-
age. SVR result is smoother than the ML result and it is
sharper that the original image. Observe that the two results
are quite different.

3.4. Robustness to noise

To test the robustness to noise, we conducted the following
experiments: First, a blurred image is generated by con-
volving the cameraman image with the 5 x 5 Gaussian filter
(o0 = 1); then different levels of zero-mean Gaussian ran-
dom noise are added to the blurred image. The noise vari-
ance changes from 0.004 to 0.014 in steps of 0.002. SNR is
computed at each step to reflect the degradation. The train-
ing sets remains exactly the same as in the previous exper-
iment. Figs. 2 (a,b) show the comparative results. Fig. 2a
shows that as the variance of the noise increases, the PSNR
of the SVR restored image drops slightly while that of the
ML restored image drops dramatically. PSNR of the noisy
blurred image also decreases as the noise variance increases.
Fig. 2b shows the ISNR results. As the noise decreases, the
performance of ML improves. However, SVR is robust to
the change of the noise energy, which is important since the
knowledge about noise may not be available. For the SVR
restoration, the level of the noise does not affect the perfor-
mance of SVR much.

4. CONCLUSION

We have proposed a SVR based algorithm for the restoration
of a noisy blurred image. SVR finds the optimal ¢(X) from
the training set, which is then used to perform the deconvo-
lution. Some of the advantages of the proposed algorithm
include the following:

e The algorithm can generalize to different types of blurs
with different PSF support as well as varying noise.

e The algorithm is very robust to parameter selection.
The only parameter is the size of the sampling win-
dow when the training set is made. It does not need
to match the true blur PSF support. In our case, we
use 7 by 7 for the sampling window, but the true PSF
in the test images includes 4 by 3, 5 by 5 etc.

e Upgrading is easily done by simply including new ex-
amples.
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Fig. 2. Noise robustness test
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