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ABSTRACT
Image restoration has been extensively studied in the

past. But multi-image based restoration/compounding is

still surprisingly primitive. It usually starts with weighted

averaging of the multiple images followed by single-image

based restoration methods, which discards the abundant in-

formation hinted in the multiple images that can help the

restoration process. In this paper, we utilize the fact that

the images are corrupted by independent noise and design a

new independence measurement based on the properties of

independent random variables. The new independence mea-

surement can be efficiently evaluated and imposed as an en-

ergy term into the traditional Maximum a Posteriori (MAP)

framework, compensating to the generative models of signal

and noise. It can effectively prevent the signal from being

smoothed out as noise and hence dramatically improve the

restoration quality and robustness, especially when accurate

noise/signal models are difficult to obtain. Experiments on

real medical images show very promising results.

1. INTRODUCTION

Extensive research has been conducted to improve image

quality based on a single image. Usually, the noise on neigh-

boring pixels is independent and hence can be easily re-

duced by a low-pass filter. But this filter also blurs the sharp

edges in the image. To preserve the high frequency signal

in the image, e.g. edges or corners, prior knowledge has to

be used to discriminate the signal from the noise. Various

methods are proposed to model the high frequency signal

in images, e.g. edge modelling based on Markov Random

Field [3] or quadratic signal class [5]. The difficulties arise

from the fact that accurate modelling of various signal and

noise is usually very hard if not impossible.

Multiple images can be obtained in some cases to fur-

ther improve imaging quality, which is also called image

compounding [6, 7]. For example, in ultrasound B-scans,

we can generate multiple images of the same tissue using

different frequency ultrasound. The speckle noises on dif-

ferent images are proved to be independent [7, 9]. This is

different from the traditional multiple-image based super-

resolution techniques [4]. In image compounding, the im-

ages have the same underlying signal but are corrupted by

independent noise. The multiple images do not provide

more information for super-resolution but help reducing noise.

This topic is much less studied than the single image based

restoration methods and is usually handled with very simple

weighted averaging (e.g. [6, 7]), followed by the traditional

restoration methods on the averaged image. This scheme

fails to fully utilize the abundant information hinted by the

multiple images, which could be very effective in guiding

the image restoration process.

In this paper, we propose a novel technique to fully uti-

lize the multiple images and dramatically improve the restora-

tion results with only a small number of compounding im-

ages (e.g. 2 or 3 images), which is very important when we

cannot afford to scan many compounding images in reality.

The main idea is to fully exploit the independency between

the noise on different images. Independence analysis has

been widely used in many different applications [2], but it

is rarely seen in image restoration. We propose to utilize this

constraint to reduce the possibility of misclassifying the sig-

nal as noise and hence preserve the sharp edges and corners

without accurate modelling of them. This method is robust

even when we have spatial variant noise and inaccurate sig-

nal/noise models. It is extremely useful for medical imag-

ing, where the noise could be non-stationary and dependent

on the underlying structures.

The rest of the paper is organized as follows. In Sec-

tion 2, the detailed steps of our compounding technique are

explained. In Section 3, we report very promising results

in compounding some real medical images. Conclusion is

given in Section 4.

2. IMAGE COMPOUNDING UNDER
INDEPENDENCE CONSTRAINT

To illustrate the compounding algorithm, we start with two

images (it will be extended to handle more images in sub-

section 2.3). Let’s assume two images
� � � � �

have the same

underlying signal � (for simplicity, no motion or registra-

tion are considered in this paper) but are corrupted by inde-

pendent noise � � � � �
, i.e.

� � 
 � � � �
and

� � 
 � � � �
.

Weighted averaging is widely used to estimate the true

signal. Assuming � �
and � �

are zero mean and have the

same variance, we have
�� 
 � � � � � � � � �

. But a detailed
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study can show the problem of this scheme. If
��

is the true

signal, the noises are:
�

� � � � � � ��
and

�
� � � � � � � �� 

. We

can see that the two noise components are totally correlated

(i.e.
�

� � � � � � � � �  � � � � �
� �

), which is contradicted to the

truth that � �
and � �

are independent. Only when we have

a large number of images, the weighted averaging becomes

more accurate and the residual error
�

� � more independent.

From this example of compounding two images, it can be

easily seen that, even though widely used, simple averaging

is not an optimal way to combine the multiple images.

To better compound the multiple images, we propose to

enforce the independency between the noise components.

The intuition is simple. If the estimation of the signal is

wrong, the error (i.e. � � ��
) will be uniformly added to the

residual errors (i.e.
�

� � � � � � � � � �� 
) on all images and

increases the dependency between them. By enforcing the

independence constraint, we can prevent misclassifying the

signal as noise and hence achieve better restoration result.

In this section, we first explain the limitation of the tra-

ditional MAP based image restoration method. Then an

efficient measurement of the independency is designed for

the traditional energy minimization framework to enforce

noise independency. An iterative minimization method can

be used to find the optimal restoration result.

2.1. Traditional MAP image restoration

In the traditional MAP estimation based image restoration,

generative models are used. It assumes that we have the

probability distribution models of both noise and signal. Then

a MAP estimation can be obtained. It can be easily extended

to multiple images. With the assumption that � �
and � �

are

independent, we have:

� � �� � � � � � �  � ! # � � � � � � � � ��  � � �� 
� ! # � % & � � � � ��  � % ( � � � � ��  � ) � ��  (1)

where c is a normalization constant.
� % + � 

and
� ) � 

are the

prior noise/signal models respectively. Based on Gaussian

noise modelling and smooth signal constraint, we can define

the cost function . � �� 
as follows:

�� � 0 2 4 6 8 : <= . � ��  � 0 2 4 6 8 : <= @ B D � � � �� � � � � � � 
(2)

� 0 2 4 6 8 : <= � E � � � � � ��  �
� E � � � � � ��  �

� E G � �� � I�  � 

where
I�

is the average intensity of the neighborhood. The

first two terms enforce that the estimated image should look

like the observed images. The 3rd term models the signal

property and prefers smooth signal. Many studies has been

focused on the signal modelling based on different energy

functions [3, 5]. The MAP estimation can be obtained iter-

atively based on the derivative of . � �� 
:

J . � �� 
� # J �� � E � � �� � � �  � E � � �� � � �  � E G � �� � I�  � O

(3)

Because the
I�

is unknown and has to be estimated based

on the solution on previous iteration. We can use the itera-

tive minimization process:

�� Q S U � W � � E � � E �  � �� � � Y Z \  � E G � �� � I� Q S W 
E � � E � � E G (4)

where
� Y Z \ � � E � � � � E � � �  � � E � � E � 

. This leads di-

rectly to the traditional averaging and filtering scheme. This

scheme is the optimal solution if all the assumptions are

right and we have very accurate signal/noise models.

However, in reality, obtaining accurate prior models is

very difficult if not impossible. For example, we can see

that in the CT image shown in Fig. 1 (a), there is non-

isotropic noise which is very hard to be distinguished from

the edges or lines. In ultrasound, the speckle noise is non-

stationary and dependent on the underlying structures and

sub-resolution scatterers. Considering all this, this genera-

tive model based method cannot provide satisfactory results.

On the other hand, the prior knowledge of the indepen-

dence between the noises, even though used in the deriva-

tion of the MAP framework, is never enforced in the opti-

mization. In fact, this knowledge can be very helpful in dis-

tinguishing the signal and the noise. To show the robustness

and effectiveness of the independent noise constraint, we

impose it with the simple smooth signal model and Gaus-

sian noise model in our experiments and still achieve sur-

prisingly sharp compounding results.

2.2. Independent noise constraint

When only a single image is available, the only thing we can

do is to rely on some assumptions and the prior noise/signal

models as in the traditional MAP framework. However,

when multiple images of the same scene are available, av-

eraging the images followed by the traditional restoration

methods won’t give us the optimal solution because it ig-

nores the abundant information in the correlation between

different images.

As we have pointed out, in real-world applications, it

is almost impossible to obtain very accurate models of all

the possible signal and noise. If we have inaccurate models,

it will be reflected in the restored image
��
, which ideally

should be equal to the true signal � . The restoration error

(i.e. � � ��
) will appear in all the residual errors:

�
� � � � � � �� � � � � � � � �� 

(5)

Because the
� � � �� 

is common for all the images, the

correlation between the residual errors will increase with the

restoration error. So the independency between the residual

errors provides an elegant way for us to detect and correct

the restoration error caused by invalid assumptions or inac-

curate signal/noise models.

II - 110

➡ ➡



However, the strict independency (i.e. � � � � � � � � 	
� � � � � � � � � �

) is very expensive to evaluate [1]. So we pro-

pose to rely on one of the important properties of the inde-

pendent random variables:

� �  � � � � �  � � � � � � 	 � �  � � � � � � � �  � � � � � �
(6)

where
 � � �

and
 � � �

are any kind of functions of � �
and

� �
respectively.

� � �
is the expectation value.

If we choose
 � � � � � 	 � �

and
 � � � � � 	 � �

, the in-

dependent noise constraint is reduced to uncorrelated noise

constraint. When the noise is Gaussian distributed, they

are equivalent. In our experiment, we use this approxi-

mated constraint instead of enforcing real independency and

achieve very good results. More complex
 � � �

or
 � � �

(e.g.

higher order moments) can be used for more accurate ap-

proximation of independence constraint if necessary.

2.3. Multiple image compounding

As we have explained in previous sections, we should ex-

plicitly enforce the independence between the noises to re-

duce the restoration errors caused by the invalid assump-

tions or inaccurate signal/noise models. We propose to use

the traditional energy minimization framework, with an ad-

ditional energy term derived from Eq. (6). The new en-

ergy term regularizing the independence constraint between

the residual errors of image
�

and � (i.e.
��  	 !  " �!

and�� $ 	 ! $ " �!
) can be defined as:

%  ' $ � ��  � �� $ � 	 + � �  � � ��  �  � � �� $ � �
" � �  � � ��  � � � �  � � �� $ � � + � (7)

where the
� � �

is the expectation and can be calculated in a

small neighborhood (e.g. 15 by 15 in our experiments). For

accuracy, we could also add several terms based on different � � �
and

 � � �
to better measure the independency.

For multiple images, we use the sum of the pairwise in-

dependency to approximate the joint independency between

the residual errors. The new objective function with inde-

pendence constraint is now defined as:�! 	 0 1 2 3 � 6 89 : � �! � 	 0 1 2 3 � 6 89 � < = � �! " >! � �

?
@

A
 C � <  � !  " �! � �

? < @ D �
@ F �

A
$ C �

@
A

H C $ D � % $ ' H � (8)

To find the optimal solution, an iterative optimization

process can be easily designed similar to the traditional frame-

work shown in sub-section 2.1. The detailed derivation is

omitted due to the space.

3. EXPERIMENTS

To show the robustness of the new compounding method,

we apply it on some difficult medical images, where accu-

rate signal/noise models are hard to obtain.

Fig. 1. CT image compounding

First, a set of three CT images are tested. In the CT im-

ages, the noise is not isotropic but looks more like line struc-

tures, while the non-isotropy can hardly be predicted. The

traditional edge modelling cannot distinguish such noise from

the signal. We just apply the simple smooth signal model

in the objective function in Eq. (8) and achieve very good

restoration as shown in Fig. 1 (b). We can see that the noise

is dramatically removed while the weak signals (i.e. the

various circles) are well preserved with sharp boundaries

except the very weak ones.

We also test our algorithm for ultrasound frequency com-

pounding. Three images are scanned using different fre-

quency ultrasound. Because the acoustic signal has been

taken I K 2 � �
before converting to the display images, we as-

sume the multiplicative speckle noise in acoustic signal is

now additive and apply our compounding technique to re-

store the underlying signal. One of the three original images

is shown in Fig. 2 (a). Averaging the three images does not

reduce the noise dramatically due to the small number of

compounding images (as shown in Fig. 2 (b)).

To apply the adaptive image filtering on the averaged

image, the main difficulty is the non-stationary noise, which

is also dependent on the structure [8], making accurate mod-

elling almost impossible. We use the adaptive wiener filter

(with 15 by 15 neighborhood) in matlab for comparison.

The result is shown in Fig. 2 (c). As we can see, strong

signal can be detected and preserved well. But the weak

features are severely blurred while the noise region is not

smoothed enough.

Our algorithm exploits the correlations between the resid-

ual errors with the simple noise/signal models as shown in

Eq. (8). The result is shown in Fig. 2 (d). Without the inde-

pendence constraint, this simple noise/signal modelling will

severely blur all the structures in the image due to the lack of

edge modelling, generating much worse filtering result than
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Fig. 2. Ultrasound frequency compounding

the adaptive Wiener filter. But with the independence con-

straint, it prevents misclassifying signal to noise. The weak

edges are preserved much better, while the noise regions are

smoother than the adaptive Wiener filter.

4. CONCLUSION

Various independence assumptions are assumed in traditional

MAP frameworks to factorize the joint distribution terms,

but never seriously investigated and enforced in the opti-

mization process. In this paper, we study the independency

between noise components for multiple-image compound-

ing. An effective measurement is designed to regularizing

the independency between noise in the traditional genera-

tive model based filtering framework, resulting a new al-

gorithm much more robust to inaccurate signal/noise mod-

elling. Comparisons with some traditional methods (e.g.

MAP filtering scheme and adaptive Wiener filter) clearly

demonstrate the strength of the new method.
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