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ABSTRACT

In this communication, we introduce the concept of gravitational
transform, with application to multicomponent image classifica-
tion. This general concept, from which many settings can be im-
plemented, takes into account both feature sets extracted from the
image and the spatial distance between pixels in order to improve
the further classification, and thus the partitioning into homoge-
neous regions. Examples of classification and comparative results
with synthetic data are presented, showing that this approach im-
proves the classification rates in all cases, independently of the
chosen classification technique, and outperforms some recent ap-
proaches in contextual multidimensional unsupervised clustering.
The encouraging results obtained make this technique a valuable
tool to insert between the features extraction process and the unsu-
pervised classification process.

1. INTRODUCTION

The clustering of multicomponent (color or multispectral) im-
age data is a central step in every processing chain aiming at in-
terpreting the image content. In this communication, we address
the unsupervised clustering of multicomponent image data, assu-
ming the property of similarity between local features available
at neighboring image sites. Taking the example of multispectral
aerial image analysis, we consider in the following that the pro-
duction of thematic maps from this data is not only a problem of
data clustering in high-dimensional spaces, but also a problem of
partitioning the image into homogeneous regions (homogeneity in-
cluding, if necessary, texture). Actually, a number of unsupervised
classification techniques used for multispectral imagery rely on the
assumption of pixels’ statistical independance. This can be explai-
ned at least by two facts:

— The introduction of generalized second-order statistical fea-
tures (e.g. auto-correlation or co-occurrence attributes) ra-
pidly increases the dimensionality of the feature space, thus
making the extraction of relevant information difficult. This
problem is referred to as the curse of dimensionality in the
literature (see [3] for example).

— In some applications, the risk of non-detection for some
under-represented classes (i.e. rarely present in the image or
corresponding to few very small regions) should absolutely
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be minimized. This is actually often the case for example in
multispectral imagery.

Recently there has been attempts to take into account the as-
sumption of probable feature similarity (or correlation) between
neigbouring pixels in multicomponent images [2], [9], [10], [11].
The processing technique which is proposed here aims at preparing
the data before the unsupervised clustering step. It is a very general
procedure since it can be applied to any multidimensional data re-
presentation and feature space. It is inspired from former research
works on gravitational clustering [12], more recently revisited in
a comparative study with fuzzy and hierarchical clustering tech-
niques [5], and also in the framework of color image segmentation
[6]. The last two works report better classification results credited
to this approach in comparison with the classical k-means, fuzzy
c-means and k-nearest neighbors methods. Also, it should be no-
ted that the work presented herein is in some manner in direct link
with inverse diffusion variational approaches, now widely used for
histogram transform or edge-preserving image filtering [8].

In section 2, we introduce the gravitational transform approach
and detail its practical setting as a pre-processing step before clus-
tering. In section 3, we present the general methology which is
used to assess this approach and give some comparative results
obtained with other recently developed contextual clustering tech-
niques, such as the Mean Shift [2], the fuzzy c-means method of
Sittigorn et al. [9] or the k-means method of Theiler et Gisler [10].
We will conclude and provide some perspectives of this work in
section 4.

2. GRAVITATIONAL TRANSFORM

2.1. Overview

The main purpose of the gravitational transform is to high-
light the relevant modes of the data in the multidimensional space,
by performing an adequate transform of the features distribution.
Considering its application to multicomponent image data cluste-
ring, let N denote the number of image components. By choosing,
for instance, as a feature vector (or point) x = [1 ... zy]" the in-
tensity in each of the IV spectral band (but many other choices are
possible, including texture features), the principle of gravitational
transform consists in applying to each point a force of attraction
which depends on its distance to another point or to a set of other
points of the distribution.
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2.2. Model of attraction

Consider the set of N-dimensional data {Xs }sescnxn which
are located at the different pixel sites s. From a general point of
view, one can define the attraction of the point x; on the point x;
through the following model:

F—‘s; — g X T Xt , 1
d(xs,X¢)
where d(xs, x;) is a distance to be defined and « > 0 is a constant
analog to the gravitational constant in classical mechanics. In this
model, the force of attraction is obviously greater as the two points
are closer to each other.
Three questions of diverse importance may then arise:

1. What kind of distance should be used ? To our knowledge,
this question is still widely open, although the classical me-
chanics would point out a choice of d(xs,x:) = ||xs —
x¢||%, and that passive optical multispectral imagery also
indicate the spectral angle distance as a potential and now
well-adopted alternative to the Euclidean distance [4].

2. What kind of simple attraction scheme should be used ?
The ones proposed in [12] and [5], in spite of their rele-
vance, both have the drawback of a heavy computational
burden since the force of attraction applied on one point is
the sum of the contributions of all the other points’ indivi-
dual forces.

3. Should the adopted scheme be global or local? In [12] and
[5], the notion of features spatially local similitude is not
taken into account, which in our sense does not help obtai-
ning relevant classification results, particularly in the field
of image processing.

Through these questions, we can see that the principle of gra-
vitational transform may be practically derived in a wide variety
of ways. However, the gravitational transform algorithms that are
generally considered, all share a common iterative setting: the fea-
ture data update is performed within a few number of iterations.
Moreover, a so-called Markovian evolution scheme can be set up
[12], which disables the time integration of the force of attraction,
or equivalently resets to zero the speeds of points at each iteration,
thus avoiding unstable evolution.

2.3. The proposed scheme

The scheme we propose here simply consists in conditioning
the gravitational transform process to the spatial distance between
pixel sites. In other words, the mutual attraction of corresponding
features vectors (or points) is enabled if and only if two sites are
neighbors to each other. Note that this approach has the benefit to
dramatically reduce the computational complexity with respect to
global approaches while taking into account the reality of probable
similar class dependance at neighboring sites. Figure 1 sketches in
a 2-D feature space only, the contribution of the force of attraction
of a point x; onto a point Xs. The sum of the individual contribu-
tions of neighbors’ forces of attraction then yields a modification
of vector x,, the evolution of which is given by the following equa-
tion:
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Fig. 1. Force of attraction of point xs by point X, both correspon-
ding to spatially neighboring sites in the image.
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Fig. 2. First order neighborhood (4-connexity) used in the evolu-
tion Eq. (2).

where ¢;,1 < ¢ < 4 represent the neighbors of site s (see Fi-
gure 2). Moreover, in our experiments, we made the choice of
an a priori distance d(xs,%;) = ||xs — x¢||> . Finally, a close
attention should be paid to the expression of the force of attrac-
tion in Eq. (1), due to the indetermination of the denominator if
d(xs,x;) = 0. This is why we have chosen a modified distance
(which is actually no longer a distance in the mathematical sense)
d(xs,%¢) = ||xs — x¢||* + ¢, where € > 0 is negligible compared
to the sole distance term.

3. EXPERIMENTAL STUDY

3.1. Methodological framework

Our aim being the objective assessment of the gravitational
transform for unsupervised clustering and segmentation of multi-
component image data, we have focused our attention and desi-
gned our experimental study regarding two questions:

— What is the intrinsic value added by this pre-processing step
with respect to the direct use of any unsupervised clustering
technique such as k-means or fuzzy c-means?

— What are the performances of this approach compared to
other recent unsupervised clustering techniques integrating
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Fig. 3. Ground truth image (3 classes) used for evaluation.
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Fig. 4. Class-conditional and total histograms computed from the
3-components image to be classified. Solid line: class 1; dashed:
class 2 ; dashdot: class 3; dotted: total. (a) first, (b) second, (c)
third component.

a spatial distance criterion ?

The objective evaluation of our results was performed in all
cases after clustering pixel values of a synthetic image with three
components (N = 3), the ground truth of which was given, and
containing three classes (see Figure 3). This multicomponent im-
age is not shown here because the distribution of associated color
levels prevents any visual distinction between classes. This can be
seen from Figure 4 where are given the class-conditional and total
histograms of this image: in each image component, a single mode
is present, and some class-conditional distributions are very close
to each other with a very large overlap. Class-conditional distribu-
tions were obtained by independant random outcomes from three-
dimensional Gaussian probability density functions. The scalar be-
tween-class / within-class ratio for this data set is approximately
0.6, which is very low. The choice of such a difficult clustering
problem is motivated by practical situations, for example in mul-
tispectral or hyperspectral imagery where objects with very close
reflectance values have to be discriminated in a noisy context.

3.2. Choice of basic unsupervised clustering techniques

The classical unsupervised clustering techniques which were
chosen to follow the gravitational transform step are the k-means
algorithm [7] [3] and the fuzzy c-means (FCM) algorithm [1] [3].
These techniques will not be described herein, and the reader is re-
ferred to the adequate literature for details. These approaches be-
long to the family of partitioning techniques based upon a distance
criterion. In their basic implementation, both require an estimate
or an upper bound of the cluster number K, and try to estimate the
optimal class centroid/membership in an iterative manner. Only
the FCM algorithm requires an additional coefficient called the
fuzziness parameter m > 1 for which we have set m = 2 as is
often the case in the literature. In our study, we have taken K = 3,
i.e. we have assumed that the correct class number is known. Note
that both techniques start with a random initialization of cluster
centroids.

3.3. Intrinsic contribution of gravitational transform

Correct classification rates were computed for each clustering
result, and the results which are reported here represent mean clas-
sification rates over 20 sample trials. Table 1 shows the mean clas-
sification rates obtained for both clustering techniques without and
with the application of the gravitational transform. The gravitatio-
nal transform (GT) was run in 10 iterations. These global results
may look relatively poor, but recall that the image under study is
very noisy. What can be pointed out is the increase of the classi-
fication rate in both cases, which reaches 15% with the use of the
k-means algorithm. However, the increase in classification rate,
while significant, is smaller for the FCM technique. From this ex-
perimental study, we can conclude that the gravitational transform
clearly highlights the modes of class-conditional distributions, as
can be seen from Figure 5.

Method Classification rate
without GT with GT
k-means 63.20% 78.23%
fuzzy c-means 48.32% 52.91%

Table 1. Classification rates obtained by different clustering tech-
niques with and without application of the gravitational transform
to the image data.

3.4. Comparison with recent contextual image segmentation
approaches

Recently, several unsupervised contextual classification tech-
niques were proposed in the context of multicomponent image
clustering. Among others, one can point out the modified k-means
of Theiler et Gisler [10], the modified FCM of Sittigorn et al. [9],
or the Mean Shift method [2]. The first two methods are based
upon the original algorithms upon which is added a spatiality”
criterion. The modified k-means algorithm consists in minimizing
a linear combination of a density criterion (i.e. the mean intraclass
variance) and (dis)contiguity (which relates to the dispersion of
classes within a local neighborhood). The modified FCM is based
upon the minimization of a functional in which appears a dissimi-
larity index between neighboring pixels. The Mean Shift method is
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Fig. 5. Class-conditional and total histograms after 40 iterations
of the gravitational transform. Solid line: class 1; dashed: class
2; dashdot: class 3; dotted: total. (a) first, (b) second, (c) third
component. The vertical axis is truncated to enhance the weakest
modes.

a nonparametric method which considers that the features distribu-
tion follows an empirical probability density function, and aims at
finding the modes of the distribution in an iterative manner, jointly
producing a segmentation map. It is important to note that each of
these techniques were set up using a first order neighborhood into
the spatial criteria in order to compare with our proposed approach.

Table 2 presents the comparative results which were obtained.
The best result was obtained by using our approach (reported from
Table 1), showing its relevance with respect to more sophisticated
techniques designed for the same objective.

Method Classification rate
Modified k-means [10] 74.34%
Modified fuzzy c-means [9] 66.31%
Mean Shift [2] 65.52%
GT + basic k-means 78.23%

Table 2. Comparison of classification rates obtained by different
contextual clustering techniques.

4. CONCLUSION AND FUTURE WORK

In this communication, we have addressed gravitational trans-
form as a pre-processing tool to be used prior to classical unsuper-
vised clustering techniques for multicomponent image data. We
have shown that gravitational transform, in spite of the data modi-
fication it generates, improves the classification task and provides
a simple and efficient way to take into account the probable simila-
rity between neighboring pixels which is a property of most image
data, especially in multispectral imaging. When compared to other

recent contextual clustering algorithms, this methodology shows
slightly better results in classification rates, especially when using
the k-means algorithm as the unsupervised classifier.

From a general point of view, one could argue that gravita-
tional transform is much more a filtering process than a tool for
further image data clustering, which is somewhat true. Actually,
this poses the problem of the image processing chain structure in
general. To our opinion, the question of the relevance of mixing
several processings such as filtering and classification into a single
algorithm is still open and requires further investigation.

Further work is currently under study about the use of gra-
vitational transform in feature clustering. Since feature extraction
(e.g. local empirical first and second order statistics) can provide
large amounts of data to classify, gravitational transform can help
in discriminating the salient distribution modes in the data, wi-
thout merging neighboring pixels which are too far from each other
in the feature space. For instance, a classification rate of 98.18%
was obtained on the same image data by applying the gravitatio-
nal transform on local empirical mean and standard deviation for
each component (6 features), and using the k-nearest neighbors al-
gorithm in [11] which moreover provided the correct number of
classes.
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