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ABSTRACT

There are two open problems for unsupervised learning of

finite mixture models: model selection and initialization.

To circumvent these problems in application of image

segmentation, we integrate the filter technique into the

EM algorithm. The proposed algorithm starts with the

largest possible number of image regions. With the

convergence of the algorithm, irrelevant components can 

be eliminated.  It does not require careful initialization

and also has the advantage of preserving the good features

of EM while making use of the spatial information in a 

reasonable amount of time.

1. INTRODUCTION 

Image segmentation plays a central role in low-level

computer vision. It is a pre-requisite for solving many

other computer vision problems, such as image

classification, content-based image retrieval, and object

recognition. Unsupervised image segmentation may be 

defined as the task of dividing an image into several

homogeneous regions automatically based on some

similarity measures. An efficient approach to measuring

the similarity of regions is using probabilistic models.

Perhaps the cleanest approach to segmenting points in

feature space is based on mixture models. But there are

two open problems for mixture models: model selection

and initialization. The usual choice for obtaining ML or

MAP estimates of the mixture parameters is the EM 

algorithm[3]. But the frequently used EM algorithm often

converges to a local maximum that depends on the initial 

conditions. Additional computation has to be introduced

to avoid the local maximum[1]. Estimating the number of

mixture components, which is called model selection, is

important and could have a significant effect on the

quality of segmentation. The methods of model selection

can be divided into two families[2]. The stochastic

methods are still far too computationally demanding. The 

deterministic methods also need using EM algorithm to

compute a set of candidate models. And for real data like

images, sometimes the selected region number is very

different from the natural number of groups present in the

image. To circumvent these drawbacks, we integrate the 

filter technique into the EM algorithm. The low pass

filtering operation can enlarge the volume of the mixture

components, which promotes the competition among the

components and make the EM algorithm has an ability to 

escape from a local maximum. The proposed algorithm

starts with the largest possible number of image regions.

By merging the components with similar parameters, our

algorithm can select the proper region number

automatically. Because it does not need model selection

criterion, estimation and model selection can be integrated

in a single algorithm. Moreover, the neighborhood

operation of the filter implicitly imposes spatial constraint

on the feature vectors. Thus it can reduce the situation

where the result regions are spatially very mixed.

The paper is organized as follows. Section 2 reviews

finite mixture models briefly. The proposed algorithm is

presented in Section 3. Section 4 presents the experiment

results. The paper’s conclusions are summarized in

section 5.

2. FINITE MIXTURE MODELS

It is said a d -dimensional random variable

 follows a
T

dxxxx ],...,[ 21 K -component finite

mixture distribution, if its probability density function can

be written as
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proportions subject to
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m 1 1m , m  is the

parameter of the m th density model and 

KK ,,,,,, 121 , 2 is the parameter set of

mixture models. Different descriptions of )|( mxp  can 

be assigned to different kinds of mixture models. We
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focus on Gaussian finite mixture models and demonstrate

the mechanism of our algorithm by means of Gaussian 

mixture models.

3.  THE PROPSED ALGORITHM 

In order to avoid using EM to compute a set of candidates

and also to avoid the error that model selection criterion

brings in, the proposed algorithm starts with the largest

possible number of the components. Model selection can 

be implemented by eliminating irrelevant components in

the iteration process gradually. The key step is how to

eliminate irrelevant components in a reasonable way. In 

practice, the E-step corresponds to calculating the

posterior probabilities of every pixel belonging to each of

the component distributions by using the current estimate

of the parameters. Then using these posterior probabilities

as weights, the M-step corresponds to calculating a new 

maximum estimate for the parameters. For image data,

every feature vector corresponds to one pixel. So rather

than directly going to the M step after performing the E 

step, we perform lowpass filtering operation to these

posterior probabilities. Low-pass filtering can enhance the

robustness of estimation. And it can also enlarge the

volume of the corresponding components. As a result, its

competitive power is boosted. For standard EM, Local

maxima of the likelihood arise when there are too many

components in one region of the space, and too few in 

another because EM is unable to move components across 

low-likelihood regions. However the expansion of 

components by means of low-pass filtering endows the 

proposed algorithm with the ability to escape from local 

maxima.

3.1 Filtering EM algorithm

The algorithm can be expressed as follows: 

(1) E-step: calculate the posterior probabilities for the

Gaussian mixtures
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Where each component density )|( mxp  is a normal

probability distribution
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Where mmm , is the parameters of each 

component.

(2) Filtering-step: perform low-pass filtering operation on

these posterior probabilities
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Where  is an operation of low-pass filtering, and

the neighborhoods of size is -by- l .
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(3) M-step: calculate the new parameter estimates using 

the filtered posteriori probability as weights
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We use component-wise EM for mixtures( )[4]

to implement our algorithm by means of its feature of

updating parameters sequentially. The proposed algorithm

is very simple and performs as follows: Expectation

Filtering Maximum. So we name it as EFM algorithm

for short. 

2CEM

3.2 Component annihilation mechanism

The low pass filtering operation can swell the components

step by step. With the help of the competitive mechanism

of EM algorithm, the redundant components tend to

coincide with the other components. This is an ideal

phenomenon, because it provides a reasonable judgment if

merge operation should be performed or not. By merging

the components with similar parameters, we can eliminate

irrelevant components. Here, we adopt the merge criterion

by the correlation coefficient of two components i and :j
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Where  is a

-dimensional vector consisting of the posterior

probability for the i th component, and 

));|(),...,;|(()( 1 Ni xjpxipp

N

 denotes the

Euclidean vector norm. When , two 

components of i  and are merged. Now the merge

operation is very simple. Let

1);,( jiJ merge

j

jii                                 (9) 

And remain the other parameters of the i th component

unchanged, and remove the th component:j

1KK                                (10) 
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4. EXPERIEMTNS

We start by mapping each pixel in the original image to a 

6-dimensional feature vector, which consists of the same

texture and color features in Blobword[1]. First, the

image is convolved with Gaussian smoothing

kernels of several scales

),( yxI

: .

Then computing the polarity at each pixel 

location:

),(),(*),(, yxIyxIyxGyxM

EEEEP , where and

represent the number of gradient vectors in the window

that are on the positive and negative sides of

the dominant orientation respectively. For each pixel, an 

optimal scale is selected. The three texture features 

are , anisotropy

E E

),( yxG

p 121 , where 1  and 2

are the eigenvalues of yxM , , and normalized

texture contrast: 212c . The three color 

features are the coordinates of the color image

computed after smoothing the image with a Gaussian 

kernel at the selected optimal scale. In order to reduce

their correlation, we condense the original 6-dimensional

feature space to 3-dimensional by applying PCA. The size 

of the image in our experiments is

or . For the present, we adopt an

adaptive filter, which tailors itself to the local image

variance [5]. Where the variance is large, the filter 

performs little smoothing. Where the variance is small, the

filter performs more smoothing. At first, the filter

estimates the local mean:
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around each pixel’s feature vector , where kx

]1515[ is the local neighborhood of each pixel in 

the image in our experiments. The filter then creates a 

pixel-wise Wiener filter
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t

kf xmp );|( )(
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kxmp , where is the noise variance. 

In our implementations, we chose the constant value

for all the iteration.   We demonstrate the

performance of our algorithm through the following three

examples.

2

1.02

In the first example, we demonstrate that EFM can

escape from local maxima. The original image is shown in

Fig.1(a). Fig.1(b) shows the segmentation result by K-

means. It is a local optimum. Fig.1(c) shows the

segmentation result of EM initialized by result of Fig. 1(b),

and the result of EM gets trap in a local maximum. Using

the parameters of Fig.1(c) as the initialization, Fig. 1(d)

shows the segmentation result of our EFM algorithm,

which converges to the global optimum. This is an 

exciting result because it is hard to escape the situation for 

the other extensions of EM algorithm. Fig.2 shows the

clustering result in feature space, where (a),(b) and (c) 

correspond to Fig. 1 (b),(c) and (d) respectively.

The second example gives an example of reducing

fragmentation phenomenon. The original image is shown 

in Fig. 3(a). Fig. 3(b) shows the result of EM. Fig. 3(c) 

shows the result of EFM. When the EM algorithm is used

for partitioning spatial data, the result classes will often be

spatially very mixed. This is because the algorithm relies 

on the assumption that all the underlying data class labels

are independent. The independence assumption ignores

the influence that one object exerts on its neighboring

objects. Filtering technique provides a powerful tool to

incorporate an a priori knowledge about the spatial

statistics into the EM algorithm. So the spatially mixed

situation is reduced.

At some times, model selection criterion cannot give

proper image region number. In the Fig.4, we choose the

two examples with bad segmentation results of 

Blobworld[1] and also give the results of our algorithm.

The largest times of iteration of EM algorithm is set to be

15. For Blobworld, the threshold is set to be . For 

our algorithm, the threshold is set to be . In 

Blobworld,

210
510

K ranges from 2 to 5. For each K ,

Blobworld starts with 4 different initializations, and

selects the best result as candidate. At last, MDL criterion

is used to choose the suitable number of region. In order

to take account of spatial information, Blobworld

integrates the coordinates of each pixel in feature vectors. 

So the dimension of feature vectors used by Blobworld is

8. To keep the covariance matrices from becoming

singular, Blobworld adds some noise. EFM is initialized 

by means of K-means, and the initial K is set to be 6.

Fig.4 (a), (d) show the original images. The segmentation

results of Blobworld are given in Fig. 4(b), (e). Fig.4(c), (f)

show the results of our algorithm. Under the segmentation

results, we also give the region number and the

computation time on 1.7G PC. 

5 CONCLUSION

The paper presents a filtering EM (EFM) algorithm for

image segmentation based on finite mixture models. By

integrating low pass filtering operation into EM algorithm,
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the proposed algorithm is less sensitive to initialization 

than the standard EM algorithm. By merging the

components with similar parameters, the proposed 

algorithm can perform model selection automatically.

Filtering EM algorithm presented in the paper is a simple

and flexible extension to EM for clustering spatial data. It 

preserves the good features of EM and corrects the

independence assumption of EM to some extent.
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