
A FAST LEVEL SET METHOD WITHOUT SOLVING PDES

Yonggang Shi, William Clem Karl

Electrical and Computer Engineering Department
Boston University
Boston, MA 02215

{yshi, wckarl}@bu.edu

ABSTRACT

In this paper, we propose a novel and fast level set method with-
out the need of solving PDEs while preserving the advantages of
level set methods, such as the automatic handling of topological
changes. The foundation of our method is the direct use of an op-
timality condition for the final curve location based on the speed
field. By testing this condition, only simple operations like inser-
tion and deletion on two lists of boundary points are needed to
evolve the curve. Our method is suitable for a set of general evo-
lution speeds that are composed of two parts: an external speed
derived from the image data and a speed term imposing bound-
ary smoothness or regularization. In our experiments, we demon-
strate that our algorithm is approximately two orders of magnitude
faster than previous optimized narrow band algorithms for image
segmentation tasks.

1. INTRODUCTION

The localization of object boundaries is an important and chal-
lenging task in many imaging problems, such as segmentation and
tracking. In recent years there has been intensive interest in the
use of the level set method[1, 2, 3] for boundary localization. The
level set method is attractive for its ability to handle topologi-
cal changes automatically. Its numerical implementation is also
straightforward for any dimension. While the level set method has
many advantages, its implementation, based on the solution of cer-
tain partial differential equations (PDEs), results in a significant
computational burden, which limits its use in real time applica-
tions. In this paper, we propose a novel and fast level set algorithm
which sidesteps solution of PDEs, allowing a significant reduction
in computation time, and the promise of real time implementation.

Other research has aimed at reducing the computational load
of level set techniques. When only the zero level set is of interest,
narrow band techniques have been proposed to accelerate the evo-
lution process. In [4], a tube is constructed in the neighborhood of
the zero level set with the fast marching method[5, 6] and the PDE
is solved only within this tube. Improvements to the above narrow
band algorithm were proposed in [7] and [8]. Both algorithms are
similar in that they reinitialize the level set function to be a signed
distance function at every iteration and the tube is only constructed
once at the beginning and updated dynamically thereafter. In [7],
the reinitialization of the level set function is achieved by solving

This work was partially supported by the Engineering Research Cen-
ters Program of the National Science Foundation under award number
EEC-9986821, National Institutes of Health under Grant NINDS 1 R01
NS34189, Air Force under Award number F49620-03-1-0257.

a Hamilton-Jacobi PDE for a fixed number of steps in every iter-
ation evolving the level set function. In [8], the reinitialization is
achieved by computing the distance function approximately. For
both methods, a bandwidth of at least five has to be selected for
reasonable evaluation of all the required gradients.

Despite their differences, previous narrow band algorithms are
common in that they all attempt to track the evolution of the zero
level set accurately by solving the associated PDE locally. How-
ever, this accuracy is not necessary for many imaging problems,
such as segmentation, where the goal is to extract the final ob-
ject boundary. In such cases, the evolution process of the level
set function itself is of less interest. In this paper, we propose a
new algorithm to reduce the computation requirements and con-
vergence time of the level set method dramatically for this type of
problem. In our method, we first define an optimality condition
for the final location of the boundary curve (i.e. the level set) in
terms of the behavior of the evolution speed in the neighborhood
of the boundary. We then use this condition to evolve the level set
function by updating only two boundary point lists. The resulting
algorithm can be applied to problems with a very general set of
underlying speed fields that are composed of two parts: an exter-
nal evolution speed derived from the image data and a speed term
imposing boundary smoothness or regularization. Compared with
the algorithm in [8], our method is approximately two orders of
magnitude faster for image segmentation.

We introduce the optimality condition for the final curve in
terms of the evolution speed field in Section II. A fast algorithm
based on this condition is then proposed in Section III. We demon-
strate the application of our algorithm to image segmentation in
Section IV. Experimental results for both edge-based and region-
based models are presented.

2. OPTIMALITY CONDITION

In the curve evolution method, an initial curve C is evolved based
on a speed field F using the following curve evolution differential
equation:

dC

dt
= F �N (1)

where �N is the normal of the curve pointing outward. The speed
field F is generally composed of two parts: an external speed de-
rived from the image data and an internal or intrinsic speed that
depends on the geometrical properties of C. In solving problems
based on a variational energy minimization [9], this speed and the
corresponding curve evolution, is associated to a gradient descent

II - 970-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

� � �� � �� � �� � �

� � �� � �� � �� � �

� �
� �
� �

� �
� �
� �

x
Nout

N
in
(x)C

(x)

*

Fig. 1. The neighborhood of a point on the optimal curve.

L
in

L
out

φ <0

φ>0

Fig. 2. Implicit representation of a curve in 2D based on two lists
of boundary points Lin and Lout.

solution. The aim is then to evolve the curve C until it stops at
a (in general, local) minima of the energy C∗, corresponding to a
stationary point of the dynamic equation (1). The curve C∗ at such
stationary points must satisfy the following optimality condition in
terms of the speed field F .

The Continuous Optimality Condition : ∀x ∈ C∗, there
is an outside neighborhood Nout(x) and an inside neighborhood
Nin(x) (see Fig.1) such that the speed field F satisfies:

F (y) < 0 ∀y ∈ Nout(x) and F (y) > 0 ∀y ∈ Nin(x).

In level set methods, the object boundary is represented im-
plicitly as the zero level set of a function φ. Here we choose φ
to be negative inside the curve C and positive outside C. We as-
sume that φ is defined over a domain D in RK and it is discretized
onto a grid of size M1 × M2 × · · · × MK . Without loss of gen-
erality, we assume the grid is sampled uniformly and the sampling
interval is one. For a point x in the grid, we denote its coordi-
nate as x = (x1, x2, · · · , xK). We may represent a given object
boundary uniquely through two lists of points: the list of outside
boundary points Lout and the list of inside boundary points Lin,
as shown in Fig. 2. Formally they are defined as:

Lout = {x | φ(x) > 0 and ∃y ∈ N(x) such that φ(y) < 0}
Lin = {x | φ(x) < 0 and ∃y ∈ N(x) such that φ(y) > 0}

where N(x) is a discrete neighborhood of x defined as follows:

N(x) =

{
y ∈ D

∣∣∣∣∣
K∑

k=1

|yk − xk| = 1

}
∀x ∈ D.

Using these two boundary point lists, we can translate the contin-
uous optimality condition into the discrete domain as:

The Discrete Optimality Condition : For the curve C∗ with
boundary points Lin, Lout the speed field F satisfies:

F (x) < 0 ∀x ∈ Lout and F (x) > 0 ∀x ∈ Lin. (2)

We can see that only the sign of the speed is necessary in
testing this optimality condition. Since the object boundary is
uniquely determined by Lout and Lin, and they are defined us-
ing only the sign of φ, we can propose a novel strategy to evolve
the boundary. At every boundary point, we test the following non-
convergence condition:

Con(x) =

⎧⎨
⎩

1, if ∃y ∈ N(x), s.t. φ(x)φ(y) < 0
and F (x)F (y) > 0;

0, otherwise.

If Con(x) = 0, it means the optimality condition is satisfied
at that point, and we can stop evolving it. If Con(x) = 1, it
means the optimality condition is not satisfied and we can move
the boundary point outward or inward according to the sign of the
speed. To accomplish this motion, we need only update the two
lists Lout and Lin using simple operations, such as insertion and
deletion. The value of φ only needs to be updated to be consistent
with the definition of Lout and Lin. The basic idea is to directly
evolve the boundary in the discrete domain in the direction indi-
cated by the sign of the speed function. Compared with previous
narrow band algorithms, our strategy removes the numerical re-
strictions that follow from accurate solution of the level set PDE.
As a result the algorithm is much faster. In the next section, we
will present the details of our algorithm.

3. FAST CURVE EVOLUTION ALGORITHM

In this section, we first develop the fast algorithm assuming the
speed field F consists only of an external speed. Later we will in-
corporate modifications to include the effects of an intrinsic term
imposing boundary smoothness or regularization. To this end, as-
sume we have only an external speed function F .

We begin by specifying our representation of the curve C through
the a level set function φ. For faster computation, we choose φ to
be integer valued as follows:

φ(x) =

⎧⎪⎨
⎪⎩

3, if x is outside C and x /∈ Lout;
1, if x ∈ Lout;

−3, if x is inside C and x /∈ Lin;
−1, if x ∈ Lin.

(3)

With this definition, we can easily tell the relative position of a
point in the scene with respect to the curve C from its value φ.
Near the curve this function is similar to a distance function.

Next, let us define two procedures on Lout and Lin. The first
procedure check−in(x) switches a point x from the set Lout to
the set Lin, and is defined as follows:

check−in(x) :
• Step 1: Delete x from Lout and add it to Lin. Set

φ(x) = −1 and compute its speed F (x).

• Step 2: ∀y ∈ N(x) satisfying φ(y) = 3, add y to
Lout, set φ(y) = 1, and compute its speed F (y).

The second procedure check−out(x) switches a point x from
Lin to Lout and is defined as follows:

II - 98

➡ ➡

check−out(x) :
• Step 1: Delete x from Lin and add it to Lout. Set

φ(x) = −1 and compute its speed F (x).

• Step 2: ∀y ∈ N(x) satisfying φ(y) = −3, add y to
Lin, set φ(y) = −1, and compute its speed F (y).

The basic steps of our algorithm to evolve the curve C ac-
cording to the external speed function F can now be described as
follows. At each iteration, the non-convergence condition is se-
quentially tested at each point in Lout and Lin. If it is true, we
then move the boundary inward or outward according to the sign
of F . If F > 0 at a point in Lout, we then apply a check−in(x)
procedure to this point to move the boundary outward. If F < 0
at a point in Lin, then we apply a check−out(x) procedure to
this point to move the boundary inward. During this process, idle
points that are no longer formal boundary points of C can be gen-
erated in both lists. Thus we delete those points after each iteration
to make sure Lout and Lin satisfy their definition.

We next discuss how to incorporate boundary smoothness and
regularization into our algorithm with low computational cost. Such
smoothness is usually imposed through the addition of an intrinsic
speed, chosen proportional to boundary curvature. The curvature-
based speed is typically calculated from the Laplacian of the level
set function φ, which is taken as the signed distance function of
the curve. Such calculations are costly and also pose a challenge
for our discrete-valued level set function and sign-based evolution
strategy. However, we know that evolving a function according to
its Laplacian is equivalent to Gaussian smoothing, based on solu-
tions to the heat equation. Motivated by this observation, we in-
stead impose boundary smoothness by performing a separate stage
of curve evolution based on Gaussian filtering of our discrete val-
ued level set function φ(x).

In particular, what we do in this smoothing step is to Gaussian
filter the level-set function φ(x) and then to update the lists Lout

and Lin based on the sign of the result. Let G denote a K dimen-
sional Gaussian filter of size Ng×Ng×· · ·×Ng . One cycle of our
smoothing evolution through all the boundary points is as follows:

Smoothing Cycle:

• For every point x in Lout, if G⊗φ(x) < 0, check−in(x);

• For every point x in Lin, if G⊗φ(x) > 0, check−out(x).

Similar to the evolution driven by the external speed, the smooth-
ing evolution will also generate idle points. As before, we elimi-
nate such points at the end of each evolution step.

This smoothing evolution is combined with the evolution cor-
responding to the external speed to form our overall fast level set
algorithm, which is summarized in Table 1. We alternate between
these two types of evolution in our algorithm. For each overall
cycle we first run Na evolution iterations corresponding to the ex-
ternal speed F , then we apply Ng evolution steps of the smoothing
cycle. The relative strength of these two effects is controlled by the
values (Ng, Na). The parameter Ng is the size of the Gaussian fil-
ter and controls the elimination of small holes in the final result.
For example, to eliminate holes with radius smaller than r, we can
choose Ng = 2r. Typically we choose Na ≥ Ng .

4. EXPERIMENTAL RESULTS

In this section, we demonstrate our algorithm for the problem of
image segmentation. We apply it to both edge-based and region-
based models. We compare our computation time with correspond-

Table 1. Summary of fast level set algorithm.

• Step 1: Initialize arrays φ, F , and lists Lout and Lin.
• Step 2: For i=1:Na do

– Step 2.1: Scan through the lists and update φ,
F , Lout and Lin.

∗ For each point x ∈ Lout with F (x) > 0,
check in(x) if Con(x);

∗ For each point x ∈ Lin, if ∀y ∈
N(x), φ(y) < 0, delete x from Lin, and
set φ(x) = −3.

∗ For each point x ∈ Lin with F (x) < 0,
check out(x) if Con(x);

∗ For each point x ∈ Lout, if ∀y ∈
N(x), φ(y) > 0, delete x from Lout,
and set φ(x) = 3.

– Step 2.2: Check the discrete non-convergence
condition. If it is satisfied, go to Step 2.1; oth-
erwise, go to Step 4.

• Step 3: For i=1:Ng

– For every point x in Lout, compute G⊗φ(x).
If G ⊗ φ(x) < 0, check−in(x);

– For each point x ∈ Lin, if ∀y ∈
N(x), φ(y) < 0, delete x from Lin, and set
φ(x) = −3.

– For every point x in Lin, compute G ⊗ φ(x).
If G ⊗ φ(x) > 0, check−out(x).

– For each point x ∈ Lout, if ∀y ∈
N(x), φ(y) > 0, delete x from Lout, and set
φ(x) = 3.

• Step 4: Stop the algorithm.

ing algorithms implemented in the Insight Toolkit (ITK)[10], which
has both edge-based and region-based image segmentation meth-
ods implemented with the “highly optimized” [11] sparse-field
method [8]. All experiments are run on a 3.2GHz Intel Xeon CPU
with 3.5GB Memory.

For edge-based segmentation, we follow the geodesic model
[12, 13] and two images are tested. The first is an MRI heart image
as shown in Fig. 3(a). It size is 512 × 512. In the second image,
shown in Fig. 4(a), a plane is segmented. The size of the image
is 481 × 321. As we can see from Fig.3 and 4, similar results are
obtained by our algorithm and ITK.

For region-based segmentation, we apply our algorithm to a
simple threshold-based model implemented in ITK, where the ex-
ternal speed F is 1 when the image intensity is in a specified range
and -1 otherwise. For both ITK and our algorithm, the same range
is chosen in the following experiments. In the first experiment, we
segment the white matter from a MRI brain image as shown in Fig.
5(a).The size of the image is 181×217. In our second experiment,
we segment a spiral galaxy image. The original image is shown in
Fig. 6(a). The size of the image is 512×512. From the segmenta-
tion results shown in Fig. 5 and Fig. 6, we can see that the results
of ITK and our algorithm are comparable.

The computation times of ITK and our algorithm for the four
segmentation experiments are listed in Table 2. For all the experi-

II - 99

➡ ➡

(a) (b) (c)

Fig. 3. MRI heart image segmentation results. (a) The original
image and the initial curve (the white circle). (b) The result of
ITK. (c) The result of our algorithm.

(a) (b) (c)

Fig. 4. Plane image segmentation results. (a) The original image
and the initial curve (the black circle). (b) The result of ITK. (c)
The result of our algorithm.

ments, we can see that our algorithm is approximately two orders
of magnitude faster than the sparse-field algorithm implemented
in ITK. With our algorithm, all the images are segmented in less
than 1/24 second, thus it holds the potential of real-time video-rate
processing.

Table 2. Comparison of image segmentation time with
ITK.

Image ITK
New Fast
Algorithm

Speedup
Factor

MRI heart 0.877s 0.00816s 107
Plane 1.837s 0.0261s 70

MRI brain 1.608s 0.0153s 105
Spiral galaxy 2.178s 0.0237s 92

5. REFERENCES

[1] S. Osher and J.A. Sethian, “Fronts propagation with
curvature-dependent speed: algorithms based on Hamilton-
Jacobi formulations,” Journal of computational physics, vol.
79, pp. 12–49, 1988.

[2] J. Sethian, Level set methods and fast marching methods
: evolving interfaces in computational geometry, fluid me-
chanics, computer vision, and materials science, Cambridge
University Press, 1999.

[3] S. Osher and R.P. Fedkiw, Level Set Methods and Dynamic
Implicit Surfaces, Springer Verlag, 2002.

[4] D. Adalsteinsson and J.A. Sethian, “A fast level set method
for propagating interfaces,” Journal of Computational
Physics, vol. 118, pp. 269–277, 1995.

[5] J. N. Tsitsiklis, “Efficient algorithms for globally optimal
trajectories,” IEEE Trans. on Automatic Control, vol. 40, no.
9, pp. 1528–1538, Sep 1995.

(a) (b) (c)

Fig. 5. MRI brain image segmentation results.(a) The original im-
age and the initial curve (the black circle). (b) The result of ITK.
(c) The result of our algorithm.

(a) (b) (c)

Fig. 6. Spiral galaxy image segmentation results. (a) The original
image and the initial curve (the white circle). (b) The result of
ITK. (c) The result of our algorithm.

[6] J.Sethian, “A fast marching level set method for monotoni-
cally advancing fronts,” Proc. Nat. Acad. Sci, vol. 93, no. 4,
pp. 1591–1595, 1996.

[7] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A
pde-based fast local level set method,” Journal of Computa-
tional Physics, vol. 155, pp. 410–438, 1999.

[8] R.T. Whitaker, “A level-set approach to 3d reconstruction
from range data,” Int’l Journal of Computer Vision, vol. 29,
no. 3, pp. 203–231, OCT 1998.

[9] A. Tsai, A. Yezzi, and A. Willsky, “Curve evolution im-
plementation of the Mumford-Shah functional for image
segmentation, denoising, interpolation, and magnification,”
IEEE Trans. on Image Processing, vol. 10, no. 8, pp. 1169–
1186, AUG 2001.

[10] “The insight toolkit,” http://www.itk.org, 2003.

[11] A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker, “A stream-
ing narrow-band algorithm: interactive computation and vi-
sualization of level sets,” IEEE Trans. on Visualization and
Computer Graphics, vol. 10, no. 4, pp. 422–433, Jul/Aug
2004.

[12] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active
contours,” International Journal of Computer Vision, vol.
22, no. 1, pp. 61–79, 1997.

[13] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and
A. Yezzi, “Gradient flows and geometric active contour mod-
els,” in Proceedings of ICCV, Boston,USA, 1995, pp. 810–
815.

II - 100

➡ ➠

