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ABSTRACT  

We analyze the performance of an iris based recognition 
system.  We consider a practical setting where matching 
scores are accessible for collecting data.  We assume that 
multiple scans from the same iris are available and design 
the decision rules based on this assumption.  We show that 
vectors of matching scores are described by a Gaussian 
model with dependent components both under the Genuine 
and Imposter hypotheses.  Two test statistics: the average 
Hamming distance and the log-likelihood ratio are 
designed. We show that the log-likelihood ratio with well 
estimated maximum likelihood parameters in it 
outperforms the first test statistic.  We further use 
empirical approach, Chernoff bound, and Large 
Deviations approach to predict the performance of the 
recognition system.    

1.  INTRODUCTION 

Iris-based identification is gaining considerable attention 
from the research community in parallel with its public 
acceptance.  Modern cameras used for iris acquisition are 
less intrusive compared to earlier iris scanning devices and 
public awareness of system reliability is developing.  This 
resulted in the appearance of a number of new efficient 
encoding and preprocessing techniques for iris [1,2]. A 
typical iris system consists of four major subsystems: (i) 
image acquisition, (ii) preprocessing, (iii) encoding, and 
(iv) decision making. Current research is mostly focused 
on redesigning the second and the third subsystems. 
However, a framework for comprehensive analysis of iris 
systems or a study on how various processing steps 
influence performance of iris-based identification system 
does not exist.  We believe that our work is the first of this 
kind.  At this stage, we consider a practical setting where 
matching scores are accessible for collecting data. We 

model matching scores, a sequence of Hamming distances, 
as realizations of a random process with a number of 
unknown parameters.  These unknown parameters are 
evaluated empirically.  The problems of verification and 
recognition are stated as a binary and (M+1)-ary 
hypothesis testing, respectively.  Here M is the number of 
individual classes/irises to be identified.  The models are 
then applied to predict the performance of large-scale iris-
based identification systems from a small amount of 
available data. We use empirical approach, Chernoff 
bound [3], and Large Deviations approach [4] to predict 
the performance.   

2. PROPOSED MODEL 

We assume that all IrisCodes are obtained as a result of 
processing iris images with J. Daugman’s algorithm [5].  
The major processing blocks of the system are displayed 
in Fig. 1.  An incoming image (i) is enhanced and  

Fig. 1 Block-diagram ((a) Image transformation, 
(b) Preprocessing, (c) Encoding)  

(a)

(b)
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transformed into a pseudo polar representation, (ii) 
encoded using Gabor filters, and (iii) component-by-
component quantized to two levels (zero/one) based on the 
sign of the corresponding filtered image entry.  The 
quantized sequence of components is called IrisCode. 

Most existing systems evaluate the discrepancy 
(matching scores) between two IrisCodes using the 
Hamming distance. The problem of deciding if an input 
iris belongs to the claimed identity is often stated as a 
hypothesis testing problem, where the Hamming distance, 
d plays the role of the test statistic.  Given a threshold γ , 

the imposter hypothesis (IH) is accepted if γ≥d . 

Otherwise, the imposter hypothesis is rejected. A typical 
measure of recognition performance is the average 
probability of error or, in the verification case, the ROC 
curve formed as a combination of the False Accept Rates 
(FAR) and False Reject Rates (FRR) for different values 
of γ .   

2.1. Verification Case  

In this study, we make the following practically 
feasible assumptions.  (i) Each class/iris in the database 
and a new input are represented by K  iris scans converted 
into IrisCodes. The practical value of K  is 10≤K .  
However, for the purpose of analysis we will assume that  
K  can become large.  (ii) The Hamming distance is 
calculated for arbitrary cross-coupled sets of K  IrisCodes 
such that no same IrisCode is involved twice. This 
requirement reduces additional dependences among 
Hamming distances. Let ],,,[ 21 Kddd K=d  be a vector 

of K  Hamming distances formed according to the 
assumptions above. Consider the following two test 
statistics: the average of K  Hamming distances  

Kdd
K

k k /
1∑ =

=                           (1) 

and the plug-in log-likelihood ratio test.   The average 

Hamming distance, d , is an intuitive statistic. Averaging 
is typically used to reduce the noise and thus to improve 
performance [9].    

By Daugman [5], two arbitrary selected IrisCodes are 
strongly correlated, and so are Hamming distances.  We 
model K -dimensional vectors of Hamming distances as 
realizations of K -dimensional Gaussian random vectors 
with correlated entries.   To form the second test statistic, 
consider the following hypothesis testing problem. Under 
the imposter hypothesis, ,0H  the vector d  is Gaussian 

distributed with common unknown mean for all entries 
1⋅0m  and unknown covariance matrix 0R . Under the 

genuine hypothesis, ,1H  the vector d  is Gaussian 

distributed with common unknown mean 1⋅1m  ( 0m  and 

1m  are distinct) and unknown covariance matrix 1R  ( 0R

and 1R  are distinct).  The matrices 1R  and 0R  are cyclic 

with the first row given by ],,,,1[2

iiii ρρρσ L , 1,0=i . 

Since the parameters of the models are unknown, we 
assume the availability of training data ( N  independent 
copies of the vector d ) and apply the maximum likelihood 
(ML) estimation method to estimate the parameters.  The 
ML estimates are given by  
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where iA  is the Wishart distributed KK ×  dimensional 

matrix with the  ),( qp  entry given by   
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and N  is the number of independent data realizations.  
The plug-in log-likelihood ratio for this model is 

given by:  
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where 1,0,ˆand,ˆ,ˆ 2 =im iii ρσ  are the ML estimated 

parameters.

2.2. Identification Case  

Suppose now that IrisCodes, each of length n , from M
individual irises are collected and stored in the database. 
Assume K  copies of IrisCodes are available from the 
same iris. Denote by Mkk ,,1),( K=X  and Y  random 

vectors underlying the IrisCodes of the k th individual and 
a candidate that submits his/her iris for identification, 
respectively. Assume that a candidate is also represented 
by K  IrisCodes. 

We further state the identification problem as a multi-
hypothesis testing problem. The test statistic in this case is 
a vector of log-likelihood ratios  

[ ] ,)(,,)2(,)1(
T

Mlll K=l

where the k th entry is  

):)((

):)((
log

1
)(

IHkp

GHkp

K
kl

d

d
= . 

To identify the candidate the following test is performed  
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Fig. 2  Iris Images and corresponding IrisCodes. 

where γ  is a threshold and .,,1 Mi K=

3. PEFORMANCE ANALYSIS

Performance evaluation is an important step in designing a 
decision making system.   In practical setting, it is of 
interest to derive a single analytical expression that can be 
used to predict performance of a large scale system based 
on a small amount of available data.   The literature 
contains a few results on performance analyses for iris-
based recognition systems [7,8].  Both papers perform 
analysis under dramatically simplified conditions and 
mostly focus on evaluation of the False Accept Rate, the 
probability that no intruder is able to access the iris 
system. In this work, we avoid simplifying the model and 
consider the entire average probability of error as a 
measure of performance. Since the expressions for the 
False Accept Rate (FAR) and False Reject Rate (FRR) are 
often hard to evaluate directly, one can appeal to bounds 
and approximations.  In this work, we use the Chernoff 
bound that is related to a more restrictive asymptotic 
approach called Large Deviations [4]. While the Chernoff 
bound is a valid tight upper bound on a probability of 
error for arbitrary selected parameters K  and γ , the 

Large Deviations approach requires K  be large to 
produce tight results.  If the Large Deviations conditions 
are satisfied, the FAR can be approximated as 

[ ]IHlFAR K |Pr)( γγ >= ))(exp(),( 0 γγ KIKG −≈ , 

where ),( γKG  is a slowly varying function of K  and γ

(often omitted in analysis) and )(0 γI  is the Large 

Deviations rate function under imposter distribution.  If 
the log-likelihood ratio is used as a test statistic, the rate 
function is given by    
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A similar expression can be obtained for the FRR. 
Because of limited space we do not present the expression 
for the Chernoff bound.   

The performance of the multi-hypotheses testing 
problem is described the total probability of error given by  

          (a)                                               (b) 
Fig. 3 Shown are the plots of the Genuine Reject Rate vs. the 
False Accept Rate  for (a) simulated and (b) bootstrapped data, 
K=1 and 3. 

Fig. 4 ROC curves generated using the Chernoff bound and the 
Large Deviations approximations for K=3 and 6.
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The total probability of error can be upper bounded by the 
probability of error for a binary hypothesis testing problem 
as  
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where kπ  are the prior on the hypothesis kH .  This 

expression can be further reduced to  
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4.  RESULTS 

All experiments were performed on the CASIA dataset 
provided by the Chinese Academy of Sciences [6]. The 
database contains “non-ideal” iris images of 108 irises 
with 6 images per iris. The examples of images from the 
CASIA database together with the corresponding 
IrisCodes are shown in Fig. 2.   

To obtain the ML estimates of the unknown 
parameters in Gaussian models, we formed 54 vectors 
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each of size 6 and 108 vectors each of size 3 samples of 
genuine and imposter Hamming distances, respectively. 
The values of the estimated parameters are given by 

3832.0ˆ
1 =m , 0047.0ˆ 2

1 =σ ,  1126.0ˆ
1 =ρ  and  

4613.0ˆ
0 =m , 42

0 104505.2ˆ −×=σ ,  3832.0ˆ
0 =ρ .   

To validate the model fit we applied the multivariate 
Shapiro-Wilk test for normality.  For a single dimension, 
the test produced the p-value equal to 0.46 for the 
imposter distribution and 0.52 for the genuine distribution.  
The critical p-value is 05.0crit =p .  For vectors with 3 

components, the p-value is equal to 0.0722 for the 
imposter distribution and 0.2218 for the genuine 
distribution.   The critical value for this case is 0.05.  
These results confirm that the model provides a reasonable 
fit especially for a single dimension or for vectors with 2 
and 3 components.

The proposed decision statistics (1) and (2) are tested 
both on a dataset generated using the estimated parameters 
and on a dataset created by applying bootstrapping 
technique to the data in the CASIA dataset. The results of 
the direct testing are demonstrated in Fig. 3.   

The results confirm a well known fact that the plug-in 
log-likelihood ratio test with well estimated parameters 
substituted in place of the true unknown parameters and 
with a model well fitted into data is almost optimal in the 
minimum probability of error (or Neyman-Pearson) sense.  

The plots of the Genuine Reject Rate vs. False Accept 
Rate obtained using the Chernoff bounds and the Large 
Deviations approximations are shown in Fig. 4 (for 
K=3,6).   Note that the ROC curves generated from 
Chernoff bounds are tight (ROC approaches directly 
computed ROC’s from below).   

As expected, the ROC curves based on the Large 
Deviations approximation provide a loose fit for a small 
value of K and improve as K increases.  This    
approximation is useful when a quick estimate of an error 
order has to be obtained.     

We further evaluate the upper bound on the total 
probability of error in recognition problem.  The functions 
displayed in Fig. 5(a) are the minimax verification error, 
the corresponding minimax Chernoff bound, and the 
minimax Large Deviations approximation displayed as 
functions of the parameter K .  Note that the minimax 
error is involved in (3).   The bound on the total 
probability of error for the recognition problem is 
displayed as a function of the total number of classes/irises 
and the number templates used per iris in Fig. 5(b).  Using 
terminology from [10], we introduce the recognition rate 
as KMR /)log(=   and the bound on the recognition error 

exponent as  
( )

K

errorPonBound
RE

)(log
)( −= .             (4) 

         (a)                                           (b) 
Fig. 5  (a) Minimax probability of error vs. the number of 

templates, K. (b) Bound on the recognition error exponent. 

Since the minimax verification error is fixed for every 
given  K , then  

K
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+
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where )(KC  is a function of  K  only.  This explains the 

nature of lines in Fig. 5(b). Given the number of templates 
per class/iris and the total error probability, Fig. 5(b) and 
the expression (4) specify the maximum number of 
classes/irises that an iris recognition system may contain 
such that the total probability of error does not exceed the 
specified value.    
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