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ABSTRACT 

A statistics based, non-uniform sampling of the Gabor wavelet 

decomposition coefficients for face recognition is presented in 

this paper. Gabor wavelets are popularly used to decompose face 

images into their spatial/frequency domains. The derived Gabor 

coefficients generate an augmented vector, e.g., 40 times larger 

than the original gray-scale vector. To reduce the dimensionality, 

uniform sampling of the Gabor coefficients is normally used. In 

this paper, we propose a non-uniform sampling method of the 

Gabor coefficients such that the coefficients corresponding to 

important face features are sampled much finer than those of the 

other parts of the image. The non-uniform sampling is based on 

the local statistics of the Gabor coefficients obtained from a set 

of training images. This adaptation is implemented in a 

hierarchical fashion; a coarse-to-fine strategy results in 

multi-level sampling rates. After the samples are obtained, the 

traditional principal component analysis (PCA) is used to code 

the samples for the final classification. The experimental results 

show that the proposed non-uniform sampling of Gabor 

coefficients outperforms the uniform one and the popular 

eigenfaces method.  

1. INTRODUCTION 

Face recognition has attracted much attention in the past decade 

because of its wide applications in commerce and law 

enforcement; these include mug-shot database matching, identity 

authentication, access control, and surveillance. Face recognition 

is one of the most challenging research topics since even for the 

same person faces appear differently due to expression, pose, 

occlusion and other confounding factors in real life. A number of 

face recognition techniques have been proposed in recent years, 

among which the eigenface method [1] and the elastic graph 

matching (EGM) method [2] are considered to be very successful. 

The comprehensive FERET test [3] ranks both methods with the 

highest recognition accuracy. 

Much research effort has demonstrated that using Gabor 

wavelets at the front-end of an automated face recognition 

system is highly effective [2][4][5][6]. The Gabor wavelets, 

whose kernels are similar to the 2D receptive field profiles of the 

mammalian cortical simple cells [7], have proven to be able to 

derive desirable features of spatial frequency, spatial locality, and 

orientation selectivity. These features are known to be robust to 

variations due to illumination and facial expression changes. The 

Gabor wavelet representation of an image is the convolution of 

the image with a family of Gabor kernels at different scales and 

different orientations. To encompass different spatial frequencies 

(scales), spatial localities, and orientation selectivities, all these 

representation results are normally concatenated and derived as 

an augmented feature vector. Gabor wavelets can be applied to 

either the entire face images or to some fiducial points on them.  

Lades et al. applied Gabor wavelets for face recognition via the 

dynamic link architecture (DLA) framework [8]. The DLA first 

computes the Gabor jets, and then performs a flexible template 

comparison among the resulting image decompositions using 

graph matching. Wiskott et al. further expanded DLA and 

developed a Gabor wavelet based elastic bunch graph matching 

method to recognize human faces [2].  

In this work, we apply Gabor wavelets to the entire face image as 

done in many papers such as [6][9]. A face is represented as the 

convolution result of the face image with 40 Gabor wavelets (5 

scales  8 orientations). Keeping only the magnitude values in 

the representation, this gives a ‘ mn40 ’ element long vector, 

where mn  is the length of the face vector. To reduce the 

dimensionality of the vector, uniform sampling is traditionally 

used. However, the original Gabor coefficients do not contribute 

equally to the face recognition task. Consequently, an analysis 

that would weight the coefficients according to their 

effectiveness in recognition should increase the system’s 

performance. In this paper, we propose a statistics based, 

non-uniform sampling strategy. The experimental results show 

that this approach improves the recognition rate.  

The remaining of this paper is organized as follows: Section 2 

describes the Gabor wavelets and Gabor coefficients. In section 3, 

we introduce the proposed non-uniform sampling approach in 

detail. Sections 4 and 5 show the experimental results, our 

discussion and conclusions.  

2. GABOR WAVELETS AND GABOR COEFFICIENTS 

2.1. Gabor Wavelets 

Spatial/frequency analysis has played a central role in feature 

extraction as it combines two fundamental domains and allows  
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Figure 1. All 40 Gabor wavelets at different scales and 

orientations 

the simultaneous representation of a signal in both these domains. 

Gabor wavelets have proven to be useful in face recognition 

since they extract information quanta in forms of spatial and 

frequency, two physically measurable quantities, combined in the 

most elegant way by the Heisenberg’s uncertainty relation [10]. 

It is well known that the Gabor wavelets effectively model the 

receptive field profiles or cortical simple cells in the primary 

visual cortex [7]. The Gabor wavelet representation, therefore, 

captures salient visual properties such as spatial localization, 

orientation selectivity, and spatial frequency.  

The 2-D Gabor wavelets (kernels, filters) can be defined as 

follows: 
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The 2-D Gabor wavelet is a two-dimensional plane wave with 

wavelet vector jk  restricted by a Gaussian envelope function 

with relative width . The first term in the square brackets 

determines the oscillatory part of the wavelet. The second term 

makes the wavelets DC-free. The first term in (1) makes the 

energy of wavelets of approximately equal values. As is the case 

with other wavelets, the Gabor wavelet representation allows the 

description of spatial frequency structure of a face, as well as 

preserves spatial relations. The Gabor wavelets are all 

self-similar since they can be generated from one wavelet, the 

mother wavelet, by scaling and rotation. Normally Gabor 

wavelets at five scales ( 4,...,0m ), and eight orientations 

( 7,...,0n ) are used. Figure 1 shows all the 40 Gabor wavelets 

at different scales and orientations that are used in this paper.   

(a) 

(b) 

Figure 2. (a) An ORL face image, (b) Magnitude of the Gabor 

coefficients 

2.2. Gabor Coefficients 

The Gabor wavelet representation of an image is the convolution 

of the image with a family of Gabor wavelets.  Let ),( yxI  be 

the gray level distribution of an image, the Gabor coefficients of 

image I  and a Gabor wavelet xj  is defined as follow: 

xxIxO jj *      (2) 

where ),( yxx , and * denotes the convolution operator. 

The Gabor coefficients of a sample image in the ORL face image 

database are shown in Figure 2.   

3. STATISTICS BASED NON-UNIFORM SAMPLING 

OF GABOR COEFFICIENTS 

Since the Gabor coefficients xO j  consist of different local, 

scale, and orientation features, we concatenate all these features 

in order to derive a feature vector, X . Assuming the image size 

is mn , and since we are applying 40 Gabor wavelets, the size 

of the derived feature vector X  is 40mn . Normally, 

before the concatenation, one first downsamples each xO j

by a factor , e.g., 88 . This sampling is traditionally 

carried in a uniform fashion. Here, we should notice that if we 

use a fine sampling rate, the resulting vector might be too large. 

However, if we use a coarse sampling rate, some important 

features may be lost. Intuitively, the 40mn  coefficients do  
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1.  Set the initial sampling grid size

(e.g., 16×16) and the minimum

sampling grid size (e.g., 4×4).

(o in the right figure is a sample
point.)

2.  For each new grid patch 
If Local variance > Global
variance and the sampling grid size

> the minimum sampling grid size,

Then refine the sampling grid size
to quarter, i.e. 8×8; 

Otherwise, stop refining this

patch. 

3. Go to Step 2 

4. When there is no new patch, end. 

Figure 3.  Non-uniform sampling algorithm 

not contribute equally to the face recognition task. Therefore a 

uniform sampling method that treats all coefficients equally will 

not result in optimal performance. Thus, we here propose an 

approach that assigns higher importance to the more relevant 

parts of the augmented coefficient vector by sampling them at 

finer rates, and uses sparse samples at the less relevant parts.  

To define the importance of the different sections of the Gabor 

augmented vector, we use an ensemble of k training images. This 

process can be operated off-line to save the whole recognition 

processing time. First of all, we find the Gabor augmented 

vectors of all these k training images. To find the sections in 

these k vectors corresponding to important features, we notice 

that the coefficients corresponding to each such section have 

higher variances than the coefficients corresponding to the less 

relevant features. This is because important features, such as the 

eyes, have higher variances in their corresponding coefficients 

than those of less important features such as the cheeks. To 

identify which vector sections need to be sampled finer or less 

fine, we use a coarse-to-fine strategy. The Gabor coefficients are 

first assumed to be down sampled at a coarse rate. For each 

sub-section of the Gabor coefficient vector, we test the mean 

variance of this section among the training set; we call it the 

local variance. If the local variance is higher than the global 

variance, which is measured on the entire Gabor coefficient 

vectors, it means this sub-section is important, and we increase 

its sampling rate to its double. Otherwise, we keep it unchanged. 

If using higher sampling rate, the local variance is still high, we 

double the sampling rate again until it reaches predefined highest 

sampling rate. Figure 3 illustrates the process.  

After the non-uniform sampling of the Gabor coefficients, we 

apply principal component analysis (PCA) to code the derived 

samples and then classify the face images using the simplest 

nearest neighbor method. 

4. EXPERIMENTAL RESULTS

Figure 4. Samples of face images in the ORL database 

The ORL face database (developed at Olivetti Research 

Laboratory, Cambridge, U. K.) is used to examine the proposed 

approach. The ORL database is composed of 400 images with 

ten different images for each of the 40 distinct subjects. The 

images vary across pose, size, time, and facial expression. All the 

images are taken against a dark homogeneous background with 

the subjects in an upright, frontal position, with tolerance for 

some titling and rotation of up to about 20o. There is some 

variation in scale of up to about 10%. The spatial and gray-level 

resolutions of the images are 92×112 and 256, respectively. 

Figure 4 shows some images in the ORL face image database. 

They are resized to 64×64. Here we use 5 images per subject for 

training, and the other 5 for testing. 

To recognize a particular input face, the system compares the 

feature vectors of this face with all those of the database faces 

using the Euclidean distance nearest-neighbor classifier. 

Denoting the feature vector of the probe face image as p , and 

that of a database face as f , then the Euclidean distance 

between the two is 
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And M  is the number of features. A match is found when the 

minimal value of d  is obtained.

Figure 5 shows the results corresponding to the uniform 

sampling of the Gabor coefficients and Figure 6 shows those 

corresponding to the non-uniform sampling. We can see that the 

sections of coefficients with high variances correspond to salient 

face features, thus those features get sampled at a finer rate while 

the other face parts corresponding to less relevant coefficients get 

sampled at a coarser rate. Figure 7 shows the correct recognition 

rates of the eigenface, uniform sampling and our non-uniform 

sampling methods. It shows that our new method can 

significantly improve the recognition rate. 
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Figure 5. Uniform sampling (64 samples) 

Figure 6. Non-uniform sampling (64 samples) 

5. DISCUSSION AND CONCLUSIONS 

In this paper, we propose a non-uniform sampling algorithm to 

sample the augmented Gabor coefficients. Our strategy is based 

on sampling the more relevant sections of the Gabor coefficients 

in a finer fashion than the less relevant ones. The variances of the 

coefficients corresponding to the same sections of the training 

vectors are used to determine the relevance of the coefficients. 

This is because of our observation that the salient features of a 

face, e.g. the eyes, have larger variances among different people 

than other features, e.g., the cheeks. Therefore our algorithm 

obtains more samples on the more relevant features of a face and 

less samples on the less relevant ones. As the sampling is 

performed in a hierarchical way, we generate multi-level 

sampling rates. Because we save some bits on the less relevant 

coefficients, we can use finer sampling rate for the more relevant 

ones (The corresponding results are shown in Figure 5 and 

Figure 6, where 8×8 sampling size for the uniform coefficient 

sampling. For the non-uniform one, we get 16×16 sampling size 

on the forehead and cheeks while 2×2 sampling size on the eyes. 

Both have 64 samples). Thus with vectors of the same length, we 

can reach higher recognition accuracy. The experimental results 

have shown that our non-uniform sampling of Gabor coefficients 

has better recognition accuracy than uniform sampling of Gabor 

Figure 7. Comparison of PCA (Eigenface), Gabor plus PCA  

(uniform sampling), and the new method with the statistical 

selection (non-uniform sampling) of Gabor coefficients 

coefficients method and eigenface method. 
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