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ABSTRACT

In this work we consider the problem of wavelet image denois-
ing when some of the pixel values are unobserved. Our approach
is to treat those unobserved pixels as missing data and adopt the
self-consistency principle to define a “best” wavelet estimate for
the true image. We propose fast and effective algorithms for com-
puting such self-consistent wavelet estimate. The practical per-
formance of our proposal is evaluated via a simulation study. A
possible application of this work is image inpainting.

1. INTRODUCTION

Wavelet techniques have long been a popular approach for de-
noising images; e.g., see [2, 7, 8, 14]. Main reasons for this are
that wavelet estimators enjoy excellent minimax properties and
that they are capable of adapting to spatial and frequency inhomo-
geneities [4, 5]. In addition, they are backed up by a fast algorithm
[9].

In the process of capturing an image, due to detector malfunc-
tion or some other reasons, it is not uncommon that some of the
pixel values are not recorded. With the presence of such unob-
served pixel values, most existing wavelet denoising techniques
cannot be directly applied to recover the original images. The goal
of this paper is to propose a method for handling this problem.
Our approach is first to treat those unobserved pixels as missing
data, and then invoke the self-consistency principle [12] to define
wavelet estimators for images with missing pixels. As stated in
[12], self-consistency is a fundamental concept in statistics, and is
a general statistical principle for retaining as much as possible the
information in the data.

A more precise statement of the problem is as follows. Let
f=(f1,...,fn)7 be the true image that we want to recover and
y = (y1,...,yn)" be the noisy version of f satisfying

yi =fi+ei, e~ iidN(0,06°), i=1,...,N. (1)

It is assumed that the number of rows and columns of f are both
integer powers of 2 so that a 2D discrete wavelet transform (DWT)
can be applied. The aim is, using wavelet methods, to estimate f
when only a portion of the elements of y is observed.
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2. A SELF-CONSISTENCY CRITERION FOR WAVELET
IMAGE DENOISING WITH MISSING PIXELS

This section presents the proposed self-consistency criterion for
wavelet image denoising when missing pixels are present. First we
fix the notation. We partition the elements of y into two subsets:
those that are observed and those that are not observed (i.e., miss-
ing). We denote, respectively, the number and the subset of the
observed elements as n < N and y,,., and write the subset of the
missing elements as y,,,;.. We shall call y the complete data and
re-name it as Yeom> ie., Y=Yecom = {yobs: ymis}' In addition,
we define I .5 as the “observed data index set”: ¢ € Iops < y; i
observed.

Suppose that when the complete data y.,,, is available, we
have a method for computing the “best” estimate } com for the true
image f. Now, given only the observed data y,,., we propose
estimating f with the solution }‘obs that solves following self-
consistent equation:

E I:fcom(')|yobsﬂf: fobs:| = fobs(')' 2
Observe that definition (2) is not restricted to wavelet image de-
noising, nor to any Gaussian noise assumptions.

The use of the self-consistent equation (2) for the present prob-
lem is motivated by the fact that many previous applications of the
self-consistency principle often led to the most efficient estimating
procedures. Examples include, in the parametric setting, maxi-
mum likelihood estimation via the EM algorithm [3] and, in the
nonparametric setting, the Kaplan-Meier estimator [6]. In view of
this, it is expected that the proposed wavelet estimator j"obs, the
solution to (2), would possess excellent statistical properties.

3. THREE ALGORITHMS

The self-consistent estimator j“obs would not be of much practi-
cal value if (2) could not be solved with reasonable computational
effort. To solve (2), two steps are involved. The first is to carry
out the conditional expectation on the left-hand side, and the sec-
ond is to solve the equation, in analogous to the E-step and M-step
of the EM algorithm, respectively. However, unlike many com-
mon EM applications where the E-step is in closed form, in the
wavelet applications, the exact E-step is typically analytically in-
feasible. It is because, due to the shrinkage operation, fcom isa
highly complicated non-linear function of the missing data y, ;..

ICASSP 2005



There are two general approaches for dealing with such a prob-
lem. The first is to use Monte Carlo E-step, as in [10, 13], and the
second is to trade the exactness for simplicity by making certain
approximations to the conditional expectation. In below we pro-
pose three algorithms for computing }' obs» ONE is based on the first
Monte Carlo approach, while the remaining two follow the second
approximation approach.

3.1. A Multiple Imputation Self-Consistent (MISC) Algorithm

Our first algorithm assumes that a complete-data wavelet denois-

ing procedure has been chosen. Starting with initial estimates }(0)
(for f) and & (for the noise standard deviation o), the algorithm
iterates the following three steps fort =1, .. .:

Step1 For{ =1,...,m, simulate yfnis independently from

~(t—1) a(t—
P(ymis|y0bs;-f = -f y O :a(t 1))'

Step 2 For/ = 1,...,m,apply the chosen complete-data wavelet
denoising procedure to the pseudo completed data yl =
{Yovss Y'is and obtain ff, i =1,..., N.

Step 3 Compute the ¢-th iterative estimate of f as
5 1< .
fz(t):E;fllﬂ Z:]-aaN (3)

Also, use the residuals {y; — fi(t) : 4 € Iyps} to obtain an
efficient estimate 6 for o.

Throughout the whole paper, a constant image with greyvalue equal

. P . 20 .
to the average of Yy, . is taken as the initial estimate f ( ), while

6 is set to the standardized sum of the squared pixelwise differ-

ences between }'(0) and Y-

In the statistics literature, the repeated simulation of g ; in
Step 1 above is known as multiple imputation [11], and hence the
name MISC. In this algorithm the larger the m, the better results
one would expect, but at the expense of increased computational
time. Our numerical experience seems to suggest that, as long as
m is larger than a minimum cutoff, the additional improvement
on f computed with a larger m is not largely significant. Our
numerical experience suggests that a conservative cutoff is m =
100, although m = 10 is also often sufficient.

It is evident that the above is a generic algorithm, in the sense
that it is not restricted by the specific form of the complete-data
wavelet denoising procedure. On one hand, this is a great advan-
tage as it is extremely flexible and the additional programming,
relative to that for the complete-data procedure, is minimal as long
as it is easy to draw from the conditional distribution in the first
step, which typically is the case for independent Gaussian errors.
It also provides a benchmark and basis for developing more spe-
cialized and sophisticated algorithms. On the other hand, it is a
“brute force” algorithm, and is thus quite inefficient as a numeri-
cal algorithm. Thus it presents the need for faster algorithms.

3.2. A Simple Approximated Algorithm

To construct a fast algorithm for computing f ., we consider re-
placing the costly multiple imputation computation in the MISC
algorithm by a simple analytical approximation. We label the re-
sulting algorithm as the simple algorithm, and it is designed for a

specific type of denoising methods, namely, when the thresholding
value is a known function g(&) of &, where & is an estimate of o.
A classical example for g(&) is the universal thresholding scheme
of [4], for which g(6) = 6v/2log N.

Starting with ]"(0) and 6@, this simple algorithm iterates, at
the ¢-th iteration, the following steps:

Step 1 For each ¢ such that i € I,ns, impute the corresponding

missing y; by y.(t) = fi(t_l). Thus this creates the complete

(2
data y(t) ={yi:i € Iops} U {y}t) 21 € Ions}
Step 2 Apply a DWT to y(t) to obtain the empirical wavelet coef-
ficients w'") = Wy(t), where W is the 2D DWT matrix.
Step 3 Obtain a robust estimate 5 of o from w'®), for example,

the median absolute deviation method used by [4]. We call
5 the unadjusted estimate for o.

Step 4 Use the following variance inflation formula to obtain an
adjusted estimate 6 for o

6 = e O] + Cnlo P, 4)

n

where Cy, = 1 — % is the fraction of missing observations.
(Recall that n is the number of observed pixel values.)

Step 5 Compute w® by thresholding w'®) with the thresholding
value g(6®).

Step 6 Apply the inverse DWT to (®) and obtain the ¢-th itera-
tive estimate f(t) =wTap®,

Convergence can be declared if |6 — 6¢=1|/6®) < e. Upon

convergence, estimates of f, as well as o, will be obtained.

It is obvious that computationally this simple algorithm is much
less intensive than the MISC algorithm. It is because within each
iteration there is only one complete-data wavelet shrinkage com-
putation, in contrast to m sets of such computation with the MISC
algorithm.

A key component of this algorithm is the variance inflation
formula (4), which takes into account the effect of those imputed
yi(t)’s on the estimation of o®. Extensive numerical experiments
suggest that, not carrying out this variance inflation adjustment
would lead to an underestimation of o2, which would in turn lead
to noticeably poorer wavelet estimators. However, this variance
inflation adjustment does not accounts for all the uncertainty in
the thresholding due to missing data, and hence it does not work
well when the percentage of missing pixels is large.

This variance inflation formula was derived with the follow-
ing approximation. To simplify presentation, for the rest of this
paper we will use single-indexing w; instead of the usual double-
indexing w;, notation to denote a wavelet coefficient. At the ¢-th
step when we calculate

= B [Fuafyon £ = 7]

we pretend that the correct conditional expectation
S (t=1)
],

)

where w;’s and & are respectively the complete-data empirical
wavelet coefficients and variance estimate, can be approximated
by thresholding the conditional expectation of w; with g(&) us-
ing the adjusted . This approximation performed very well in
our simulation experiments when the percentage of missing data
is small (say less than 30%). However, this approximation will fail
when the missing percentage is large.

" = E [hwnzma)wz‘yobs, f=
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3.3. A Refined Fast Algorithm

In view of the problem with the above approximation, a more re-
fined approximation is derived. This new approximation is ob-
tained by pretending that we know o, or more precisely, by ignor-
ing the conditional variability in ¢ when calculating the E-step.
Under this situation, it can be shown that (5) becomes

TT)l(t) = a(wl(t), m) + ﬂ(u;l(t), m) X wl(t), (6)

where the a and 3 functions are given by

Oz(w,'q) — %{e,%(cxvf787%(?‘:‘,)2}7 -

Blw.n) = 24(“*“’)7@(””), ®)
no no

with ® being the cumulative distribution function of A/(0,1). In

(6), the wl(t) is the empirical wavelet coefficient obtained from
Step 2 of the simple algorithm, and 570> is its conditional vari-
ance given the observed data (and the known &2). Note that 7
can be easily computed at the outset of iteration as the /th diagonal
element of T — W RW T, where R is an N x N matrix whose off-
diagonal elements are all zero, and whose Ith diagonal elements is
one if y; is observed and zero otherwise. Thus, one can treat that
the diagonal of R is a “response indicator” vector. The quantity 7;
is a measure of the percentage of missing information in w; due to
the missing data. Notice that 0 < n; < 1, and 7 is one when there
is no information in the observed data about w; and zero when w;
is fully observed. For simplicity, in our practical calculation for
ﬂ)l(t) we use the approximation 7; = 1 — % forall [.

The resulting algorithm is identical to the simple algorithm ex-
cept that we replace its Step 5 by (6) to (8), where we use 0 = &
and ¢ = g(6?). Notice that the thresholding is now performed
via an almost exact (exact when o is known) closed-form E-step
calculation. Thus, computationally, this new and refined algorithm
is almost as fast as the simple algorithm, and it is also straightfor-
ward to program as only standard functions are involved in (6) to
(8). In addition, as it provides a much more refined E-step, the
statistical efficiency of the resulting estimator is expected to be
much closer to that of the MISC estimator with infinite number
of imputation. An intriguing insight suggested by (6) is that even
when we choose to use hard thresholding with complete data, we
should use “soft” thresholding with incomplete data, as (6) is a
form of soft thresholding as long as 7; > 0; note in particularly
0 < B(w,n) < 1whenn > 0. Wheny — 0, a(w,n) — 0 and
B(w,n) = 1j4|>c, and thus (6) goes back to the original hard-
thresholding, as it should be.

4. SIMULATION STUDY

A simulation study was conducted to evaluate the practical perfor-
mances of the MISC (Section 3.1, with m = 10), the simple (Sec-
tion 3.2) and the refined (Section 3.3) algorithms. In this study
two testing images of size 256 x 256 were used: the Lena im-
age displayed in Figure 1(a) and the Airplane image displayed in
Figure 1(b). Also, two snrs and three missing data percentages
were tested: snr = (5,7) and Cy,, = (10%, 30%, 50%). Lastly,
two missing data formation mechanisms were tested. The first one
is missing at random, in which missing pixel locations were ran-
domly selected from the image, while in the second mechanisms
the missing pixels were clustered together.
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For each of the above experimental factor combinations, 100
noisy images were generated, and the three algorithms presented
in Section 3 were applied to reconstruct the corresponding true
images. The following adjusted universal thresholding value was
used: &+/2log N —log(1 + 2561log N). In [1] it is shown that
this adjusted thresholding value is superior to the classical univer-
sal thresholding value 6+/21log N of [4]. As to provide a bench-
mark for comparison, for each noisy image, we also applied the
universal denoising method [4] (with the same adjusted threshold-
ing value) to reconstruct the corresponding true image using the
complete data Y. In below we refer this method as UniComp.
As UniComp has the full information from y.,,,, it is expected
that it would produce better reconstructed images than the other
three algorithms.

For every reconstructed images, we calculated

MSEobs = % Z {fz - fz}z

i€ Lo,

as a measure of reconstruction quality for the observed pixels.
Similar values for the missing pixels (MSEn;s, sum over i € Iops)
and the complete data (MSEcom, sum over ¢ = 1,..., N) were
also calculated. In addition we also computed the following MSE

ratio: . .
Tcom (MISC) — com O

" MSEcom of UniComp’

Similar MSE ratios for the observed (robs(MISC)) and missing
data (rmis(MISC)), and for the simple and refined algorithms
(com (simple), 7obs (simple), rmis(simple), 7com (refined),

Tobs (refined) and rmis(refined)) were also calculated. Since Uni-
Comp reconstructed the images with the complete data, it is ex-
pected that all these MSE ratios are bigger than 1. For snr = 7
and C,,, = 30%, boxplots of these MSE ratios are given in Fig-
ure 2. Boxplots for other experimental settings are similar and
hence omitted. From Figure 2 some major empirical conclusions
can be obtained. First, as all r,5s(MISC) values are fairly close
to 1, the easy-to-implement benchmark MISC algorithm performs
reasonably well for those observed pixels. Secondly, the refined
algorithm is superior to the other two algorithms, as it does not re-
quire multiple imputation (as opposed to MISC) and it uses a better
approximation than the simple algorithm. Lastly, a surprising (and
unexpected) observation is that, r,ns(refined) is in fact less than 1
when the locations of the missing data are clustered together.

For the purpose of visual inspection, two degraded versions
of Lena are displayed in Figures 3(a) and 4(a). Those black pix-
els represent the locations of the missing values. The snr is 7 and
the missing percentage is 10%. Figures 3(b) and 4(b) display the
corresponding reconstructed images obtained from the refined al-
gorithm.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented a self-consistency criterion for wavelet
image denoising when missing pixels are present. We proposed
fast algorithms for computing our image estimates. Results from
a simulation study suggest that the refined algorithm described in
Section 3.3 is the preferred algorithm. Important extensions of this
work include the development of fast algorithms for other more so-
phisticated wavelet image denoising techniques (e.g., [7, 14]) and
the application of the self-consistency principle to image classifi-
cation with missing pixels. Another important extension is wavelet
regression for 1D signal estimation with irregularly-spaced data.



(a) Lena (b) Airplane

Fig. 1. Images used in the simulation study.
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Fig. 2. Boxplots of the MSE ratios resulted from the simulation
study in Section 4. In each panel the left, middle and right box-
plots correspond, respectively, to the MISC, simple and refined
algorithm.
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