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ABSTRACT

In this paper we tackle the problem of image denoising. Given an
image distorted by additive noise of unknown probability distribu-
tion, the intensity difference between the distorted and the original
unknown images must be bounded. This idea is exploited here
and we design a series of weighted adaptive local bounds based
on local intensity information, such as the mean, variance, me-
dian and etc. The proposed method is tested and compared with
other standard techniques, such as wavelet thresholding, for im-
age denoising. Apart from the simplicity of implementation, the
results are very encouraging, as far as both visual quality of the
denoised images and quantitative metrics of improvement are con-
cerned. More importantly it provides simultaneous desnoising of
mixed noise, which is not obtainable by using single conventional
denoising method.

1. INTRODUCTION

Assume the distorted image by additive noise is formulated as
g(x, y) = f(x, y) + n(x, y), (x, y) ∈ Ω. f is the original im-
age with each pixel coordinated as (x, y) in the image domain Ω,
and n represents the unknown noise process. There is an extensive
amount of published work in image de-noising. For example, one
of the most popular recent approaches to the mentioned problem
is the use of wavelet thresholding [1-5], [9-10].

The motivation for using the wavelet coefficients for denois-
ing is that in most of the natural scenes, the signal level is much
larger than the noise level, therefore small coefficients are more
likely present due to the noise process, and large coefficients due
to the important signal features (such as edges). Thus, threshold-
ing could be applied on the image wavelet coefficients based on
certain criteria. However, the criteria for selecting thresholds can
not be determined universally, due to the uniqueness of each im-
age, which is identified by the local intensity information. Besides,
most of the methods [2-9] are only appliable to the image cor-
rupted by the Gaussian noise. Therefore, most of the existing algo-
rithms either blur the image severly in order to eliminate noise ar-
tifacts or cannot eliminate the multiple artifacts sufficiently. More-
over, they are often computationally expensive.

An alternative approach to the local thresholding of wavelet
coefficients is the restriction of local space coefficients (image in-
tensity values) within certain bounds. In most cases, the noise
is more visible in smooth regions than regions of sharp intensity
transitions. Thus, the idea is to exploit the possible range of in-
tensity values to characterize the spatially varying local image na-

ture. The contribution of this paper includes the development of
the new weighted adaptive local bounds, which can retain more
detail information for highly corrupted images. Moreover, the ro-
bustness of the algorithm to handle the outlier-like noise is im-
proved by incorporating local median informaiton into the projec-
tion. Hence our proposed method, weighted adaptive local bounds
estimator (WALBE) can be tuned to effecitively remove different
types of noise, which is not feasible to other wavelet methods,
while enough detial information is preserved. The implementation
of WALBE is less complicated compared to the wavelet domain
methods.

This paper is organised as follows. In Section II the concept
of local bounds as were originally presented in [6-7] is reviewed.
In Section III a modified formulation of the bounds is introduced.
The latest is utilised in Section IV for the cases of images cor-
rupted by different types of noise. In Section V the proposed
techniques are compared with some other denoising algorithms, in
terms of both subjective visual quality and quantitative measure-
ments. Conclusions are presented in Section VI.

2. REVIEW OF THE LOCAL BOUNDS

The concept of local bounds was first used in the context of both
blind and non-blind image restoration. In [6-7] it is suggested to
the intensity difference between the distorted and the original un-
known image must be bounded, and therefore the local intensity
information available in the distorted image, can be brought into
the image restoration problem. A set of spatially varying local
bound constraints are initially determined by examining the local
properties of the image. The estimated original image intensity
at each iteration is constrained to lie within these predetermined
bounds.

In the context of image denoising, a similar idea is exploited
this time in a noniterative way. In accordance with the noise mask-
ing property [6], the local intensity variance σ2

g(x, y) still mea-
sures the spatial activity. Along with the local mean mg(x, y), and
the maximum intensity variance σ2

gmax = max(x,y)(σ
2
g(x, y)),

which are all calculated over a local neigorhood window contain-
ing a number of pixels equal to N, a set of local lower and upper
bounds, bl(x, y) and bu(x, y) are constructed on the basis of the
observed image:

bl(x, y) = mg(x, y) − β
σ2

g(x,y)

σ2
gmax

x, y ∈ Ω

bu(x, y) = mg(x, y) + β
σ2

g(x,y)

σ2
gmax

x, y ∈ Ω
(1)

II - 370-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



in which Ω represents the support of the image. From Eqs. (1), the
denoised image is generated by the projection

P (g(x, y)) =

⎧⎨
⎩

bl(x, y) g(x, y) < bl(x, y)
bu(x, y) g(x, y) > bu(x, y)
g(x, y) otherwise

(2)

The above scheme implies that the intensity of the denoised image
is bounded. Actual values of bounds differ at different regions of
interest and are anti-propotional to the amount of noise removed.
An in-depth explanation can be found in [6] and [7].

3. DEVELOPMENT OF THE NEW WEIGHTED
ADAPTIVE LOCAL BOUNDS

One important drawback to the previous denoising approach using
traditional local bounds is that some detail information could be
lost, particularly for highly corrupted images.

Therefore our idea is to further adjust the amount of noise-
suppression to the local information and produce the weighted
adaptive local bounds, which is relevant to local features of a cen-
ter pixel. This results in more detail information to be preserved.

In this paper, Let |M [g(x, y)]|p denote the local mean re-
lated measurement. One reliable example exploited in this paper
is equal to |emg |p. Unlike the constant weight β in the traditional
bounds, the new weight for the local bounds is tuned to be much
larger if a local image feature is detected, such as edge or other
highly structured parts, but slightly smaller for those flat uniform
areas thus to remain the tightness in flat area but increase the loose-
ness in other image details. The new local bounds hence could be
demonstrated by

bl(x, y) = mg(x, y) − |emg |p
σ2

g(x,y)

σ2
gmax

x, y ∈ Ω

bu(x, y) = mg(x, y) + |emg |p
σ2

g(x,y)

σ2
gmax

x, y ∈ Ω
(3)

in which the exponent p ≥ 1 controls the relative strength of
weights in different regions. Typically p should be selected up to
such a value that |emg |p shows an approximate linear weight for
small values and weights significantly for large values. Ideally, the
weighted local bounds-based denoising provides the same level of
noise suppression as the original denoising in the uniform regions,
while reducing loss of detail in other areas.

As it stands, the projection based on weighted adaptive local
bounds proposed above can not produce reasonable solutions for
outlier-like noise. Then a redefinition of projection is needed to
improve the robustness of the algorithm.

4. REDEFINITION OF THE PROJECTION

Imposing bounds on the local image intensity [6-7] or thesholding
the wavelet domain coefficients in alternative mathematical terms
[1-5, 9-10] is equivalent to low pass filtering. It is indeed the case
that most of the image denoising methods use a low pass filtering-
type approach. This is not efficient when the additive noise has
the form of very large or very small intensity values (spots). A
representative example is the “Salt and Pepper” noise. This type
of noise is removed effectively by the use of median filtering. In
this section an extension of the bound formulation is presented,
that aims to denoise an image that is corrupted by a combination

of Gaussian and “Salt and Pepper” noise. The new pair of bounds
and the resulting projection are defined as follows:

bl(x, y) = mediang(x, y) − |emg |p
σ2

g(x,y)

σ2
gmax

x, y ∈ Ω

bu(x, y) = mediang(x, y) + |emg |p
σ2

g(x,y)

σ2
gmax

x, y ∈ Ω
(4)

G(x, y) = Pnew(g(x, y)) =

⎧⎨
⎩

bl(x, y) g(x, y) < bl(x, y)
bu(x, y) g(x, y) > bu(x, y)
g(x, y) otherwise

(5)
Consistent with the idea of incorporating more representative lo-
cal information into the bounds, the first term of local bounds, the
mean value is replaced by the median. It is believed that for most
of the local intensity distributions the median distorts the local in-
tensity less than the mean. Moreover, the second term, efficient in
removing Gaussian noise is kept same as the traditional bounds.
By incorporating the median factor with the weighted component,
the local bounds can also act to remove the Gaussian and “Salt and
Pepper” noise and preserve sharp edges.

Better results can be obtained if applying a pre-processing
prior to the local bounds projection. That procedure is called as
outlier detector, based on the Mahalanobis distance r = (G−mG

σG
)2.

The Mahalanobis distance quantifies the “inconsistency” between
the center pixel G and neighbours, which have the values of mean
and standard deviation equal to mG and σG. The comparison of
the Mahalanobis distance and the threshold will determine the ex-
istence of the outlier. If r > T (T is a threshold determined empir-
ically), the pixel, determined as a outlier, is replaced by the median
in the output image, otherwise the pixel is used directly in the out-
put image. Based on the pre-processing and two projections above
mentioned, a comprpehensive denoising rule(Weighted Adaptive
Local Bounds Estimator (WALBE)) is designed and can be tuned
to produce more robust result in the case of different noise types.

5. EXPERIMENTAL RESULTS

In order to demonstrate the performance of the proposed Weighted
Adaptive Local Bounds Estimator (WALBE) in situations of sin-
gle noise and the mixed noise, we compared it with the following
denoising methods: the linear wavelet estimator (LWE) [2], the
bishrink dualtree CWT estimator (BDCE) [9], and the traditional
local bounds Estimator (LBE) [6], on both real and synthetic im-
ages.

Since edge details represent most of the useful information
present in an image, edge-preservation is always a basic indica-
tor of the performance of all denoising algorithms. Besides, the
Improvement in Signal to Noise Ratio (ISNR) is used as another

quantative measurement, which is defined by ISNR = 10log10
‖f−g‖2

‖f−f̂‖2 ,

in which f , g, f̂ represent the original image, noisy image and the
denoised one respectively.

• Case I: The Single Noise Situation

In this case, an improvement in denoising quality is observed in all
the test images. Both noisy images, as shown in (Figure 1 (a) and
(f)) are corrupted by Gaussian noise with SNR equal to 20dB. It is
bbserved from Figures 1 (a)-(j) that the poorest results in terms of
noise amplification occur when using the LWE. Improvements are
made when using BDCE, but the results are sub-optimal, particu-
larly noticeable ringing artifacts around edges are present. More-
over, it is observed that the denoising method (LBE) based on the
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traditional local bounds enables a more accurate recovery of edge
details than the BDCE. Furthermore, the introduction of WALBE
(Figure 1 (e) and (j)) results in the removal of more artifacts still
present in the resulf of LBE (Figure 1 (d) and (i)), while the detail-
preservation is not jeopardized but more highlited.
Table 1 gives the comparison of quantative measurements ISNR

Estimator Cameraman Testpat1
LWE 5.11(dB) 6.06(dB)
BDCE 6.49(dB) 7.13(dB)
LBE 9.72(dB) 10.98(dB)

WALBE 10.17(dB) 11.79(dB)

Table 1. Performance Camparison

for all five algorithms in case I. It is evident that the WALBE out-
performs the other methods in the case of single noise.

• Case II: The Mixed Noise Situation

When both Gaussian and “Salt & Pepper” noise corrupt the orig-
inal image, the resulting noisy images are shown in Figure 2 (a)
and (f). Consistently the performance of the LWE algorithm is
still very poor, and moreover, the use of BDCE yields to the sup-
pression of the Gaussian noise only. On the contrary, the use of
sole median filtering, shown in Figure 2 (d) and (i) yields mainly
to the suppression of the “Salt and Pepper” noise and it severly
blurs the image. However, Figure 2 (e) and (j) demonstrates the
superiority of the second proposed technique (WALBE) in remov-
ing both types of noise.

Estimator Cameraman Testpat1
LWE 2.45(dB) 2.80(dB)
BDCE 3.69(dB) 4.73(dB)
LBE 5.34(dB) 6.15(dB)

WALBE 7.23(dB) 8.05(dB)

Table 2. Performance Camparison for Case II

Similar with Table 1, Table 2 gives the comparison of quanta-
tive measurements ISNR for all five algorithms in case II, which
demonstrates the satisfactory performance of , even in the case of
mixed noise.

6. CONCLUSIONS

We have proposed a simple and effective use of weighted adap-
tive local bounds for denoising. The use of local information, such
as mean, median and variance, enables an adaptive local estima-
tion of the tightness of bounds. Besides, by redefining the local
bounds and adding the pre-pocessing, the method WALBE is able
to remove the mixed noise Gaussian and “Salt and Pepper” simul-
taneously, and the results show substantial improvement in terms
of both visual quality and ISNR. As shown in all the examples,
adapting the range of bounds allows us to keep the details, while
eliminating most of the noise in smooth regions, regardless of the
type of noise. This is usually not possible with other denoising
methods, such as the wavelet thresholding. Thus, the modified
WALBE provides a more robust and efficient framework for im-
age denoising.
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[a] [b] [c] [d] [e]

[f] [g] [h] [i] [j]

Fig. 1. For Case I: (a) and (f) The real and synthetic images corrupted by Gaussian noise. (b) and (g) The Linear Wavelet Estimator (LWE)
for the real and synthetic image; (c) and (h) The Bishrink Dualtree CWT Estimator (BDCE) for the real and synthetic image; (d) and (i)
The Local Bound Estimator (LBE) for the real and synthetic image; (e) and (j) The Weighted Adaptive Local Bound Estimator (WALBE)
for the real and synthetic image.

[a] [b] [c] [d] [e]

[f] [g] [h] [i] [j]

Fig. 2. For Case II: (a) and (f) The real and synthetic images corrupted by mixed noise. (b) and (g) The Linear Wavelet Estimator (LWE)
for the real and synthetic image; (c) and (h) The Bishrink Dualtree CWT Estimator (BDCE) for the real and synthetic image; (d) and (i)
The Local Bound Estimator (LBE) for the real and synthetic image; (e) and (j) The Weighted Adaptive Local Bound Estimator (WALBE)
for the real and synthetic image.
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