
IMAGE DENOISING FOR SIGNAL-DEPENDENT NOISE

Keigo Hirakawa∗

New England Conservatory of Music
Boston, MA 02115
kh237@cornell.edu

Thomas W. Parks

Cornell University
Electrical and Computer Engineering

Ithaca, NY 14850

ABSTRACT

In this paper, we present a method for removing noise from digital
images corrupted with additive, multiplicative, and mixed noise.
An image patch from an ideal image is modeled as a linear com-
bination of image patches from the noisy image. We propose to fit
this image model to the real-world image data in the total least
square (TLS) sense, because the TLS formulation allows us to
take into account the uncertainties in the measured data. We de-
velop a method to reduce the contribution from the irrelevant im-
age patches, which will sharpen the edges and reduce edge artifacts
at the same time. Although the proposed algorithm is computa-
tionally demanding, the image quality of the output image demon-
strates the effectiveness of the TLS algorithms.

1. INTRODUCTION

In real-world digital imaging devices, the images we are inter-
ested in often are corrupted by device-specific noise. Basic re-
search in image denoising, therefore, would prove useful to appli-
cations such as low-light imaging and lossy compression. CMOS
and CCD sensors are two very important special cases of imaging
devices that suffer from noise. In CMOS sensors, we see a fixed-
pattern noise, and a mixture of independent additive and multi-
plicative Gaussian noise [13]:

x = s + (k0 + k1s)δ, (1)

where k0 and k1 are constants, and δ ∼ N (0, 1). We indepen-
dently confirmed that (1) is a good noise model for Agilent Tech-
nology’s consumer CMOS digital camera. While effective meth-
ods to remove fixed-pattern noise have been proposed [10], remov-
ing noise of the form (1) proves difficult. Many papers in the lit-
erature, however, prefer a simpler noise model [6] [7] [8] [9] [11]
[12]:

x = s + k0δ. (2)

Note that (2) is a special case of (1).
In the recent literature, statistical modeling of wavelet coeffi-

cients has been popular [1] [4] [6] [8] [9] [11] [12]. The study of
inter-dependencies of wavelet coefficients across scale, especially,
has gained strong momentum, and pair-wise processing of a co-
efficient and its parent is common. While wavelets share some
behavioral characteristics with the neurological response of a hu-
man eye, in most cases the statistical modeling of wavelets have
been derived heuristically.
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We develop a model relating the noisy image to an ideal im-
age in the total least squares (TLS) sense, taking into account the
stochastic nature of the noise and allowing small perturbations in
the system. Furthermore, we develop a denoising algorithm that,
while effective in removing noise of the form (2), removes the
signal-dependent noise of the form (1).

This paper is organized as follows. In section 2, we present
our deterministic image model, and introduce the basics of TLS
denoising algorithm. Generalizations of the algorithm are made in
section 3. In section 4 we compare results with the state-of-the-art
denoising algorithms.

2. TLS IMAGE DENOISING THEORY

In this section, we introduce the TLS image denoising theory at its
basic level. In the image denoising problem, only the noisy image
data is observed. We develop an image model relating the noisy
image to a clean image based on the TLS framework (section 2.1).
We solve this TLS problem for the case that an image is corrupted
by signal-dependent noise (section 2.2).

2.1. Simple TLS Image Model

Suppose we are given an ideal clean image, s, and a noise cor-
rupted version, x. Let s0 ∈ R

m be an image patch from s (i.e.
√

m×√
m vector cropped from an image) and {xi ∈ R

m}i∈{1,...,n},
m ≥ n + 1 be a collection of image patches from x that are rea-
sonably similar to s0. To find the relationship between s0 and the
noisy image, x, we would like to represent s0 as a linear combina-
tion of {xi}:

s0 = Xα, (3)

where X = [x1, . . . , xn]. However, in general there is no such α
that makes (3) true because s0 /∈ span{xi}. Suppose we allow a
small perturbation e0 in the system so that

s0 + e0 = Xα. (4)

The vector α that that satisfies (4) with the smallest perturbation
e0 in the L2 sense is commonly known as the least square (LS)
solution. However, the inherent flaw in the above system is that
the perturbation is confined to s0, even though there is noise in X.

Instead, we propose to allow small perturbations in both s0

and X:

s0 + e0 = (X + E)α. (5)

The vector α satisfying (5) while minimizing ‖[E, e0]‖2
F is known

as the total least square solution, denoted αTLS. Here, ‖ · ‖F is
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the Frobenius norm. In general, the perturbation in X makes the
perturbation in s0 smaller.

The solution to (5) is well documented [2] [5]. First, exam-
ine [X, s0] using singular value decomposition (SVD) [X, s0] =
UΣV T , where Σ = diag(σ1, . . . , σn+1), σ2

i > σ2
i+1. Then

αTLS = −[v1,n+1, . . . , vn,n+1]
T v−1

n+1,n+1 (6)

where [v1,n+1, . . . , vn+1,n+1]
T is the left and right singular vec-

tors corresponding to σn+1, respectively.

2.2. TLS Solution with Signal-Dependent Noise

The solution to (6) requires the knowledge of the clean image patch
s0, but this is not available in a denoising problem. In this section,
we develop a method to compute αTLS, where an image corrupted
by signal-dependent noise is given, and s0 is not provided. More
specifically, assume (1). Define si as an image patch from s cor-
responding to xi, and assume s0 ∈ {si}. Then

xi = si + k0δi + k1diag(si)δi, (7)

where δi ∈ R
m is a noise vector, and diag(si) is a diagonal matrix

whose diagonal entries are the entries of si.
We solve for αTLS without s0 and taking into the account the

stochastic nature of δi. Consider the following:

P = [X, s0]
T [X, s0] = (UΣV T )T (UΣV T ) = V Σ2V T ,

where [X, s0] = UΣV T is SVD. Our strategy is to estimate P and
obtain the right singular vector V through its eigen decomposition.

Define E{·} as the expectation operator. Estimating P is rather
simple. When m � n + 1, P ≈ E{P}, so

P = E{[X, s0]
T [X, s0]} (8)

=

[ E{XT X} E{XT s0}
E{sT

0 X} E{sT
0 s0}

]
=

[
PXX ST s0

sT
0 S sT

0 s0

]
,

where PXX = E{XT X}. When we assume

E{δi} = 0, E{δiδj} =

{
I i = j
0 i �= j

, (9)

PXX simplifies to:

PXX = ST S + mk2
0I + k2

1

m∑
i=1

diag(s2
i,1, . . . , s

2
i,n)

+ 2k0k1

m∑
i=1

diag(si,1, . . . , si,n).

When m � n + 1, we can also approximate
∑

i si,j as
∑

i xi,j ,
which is computable. Therefore, using the fact that the jth diag-
onal entry of ST S is

∑m

i=1 s2
i,j , ST S can be estimated using the

following procedure:

1. Compute PXX = XT X.

2. Compute PXX −k2
0mI−2k0k1

∑
i
diag(xi,1, . . . , xi,n).

3. Multiply diagonal entries of (PXX−k2
0mI) by (1+k2

1)
−1.

ST s0, sT
0 S and sT

0 s0 can be estimated by taking the appropriate
rows and columns from the above ST S estimate. Therefore, the
matrix P is fully computable. The new αTLS is computed from (6),
where [v1,n+1, . . . , vn+1,n+1]

T is the eigen vector corresponding
to the smallest eigen value of P . Our best estimate for s0 is ŝ0 =
XαTLS.

3. ENHANCEMENTS TO TLS IMAGE MODEL

In this section, we offer a number of different generalizations to
the TLS image models developed in section 2. Given the page
constraints, the sections 3.1-3.4 give high-level descriptions only.
Their mathematical details will be presented in section 3.5 in a
combined form. In some cases, variables are redefined to match
the improved behaviors of these generalized algorithms.

3.1. Affine Approximation

A variation to the TLS problem (5) using an affine approximation
model was solved by de Groen [2]. He showed that ‖[E, e]‖2

F =
σ2

n+1 is reduced greatly when the column-means of [X, s0] are
subtracted from their respective columns first, suggesting a better
model fit. More specifically, instead of (5), we solve for α in the
following system that minimizes ‖E, e0‖2

F :

s̃0 + e0 = (X̃ + E)α

where s̃0 = s0− s̄0, x̃i = xi− x̄i (ith column of X̃), and s̄0, x̄i ∈
R are the average values of elements in s0 and xi, respectively.

3.2. Image Patch Selection

In section 2.1, we described {xi} as a collection of image patches
that are reasonably similar to s0. In order for our image model
(5) to be effective, the set {xi} must be chosen such that image
features in s0 are well captured. The first approach is to take the√

m × √
m vectors cropped from the noisy image x in the spa-

tial vicinity of s0 [7] (call this set {x(1)
i }). The second approach,

which is motivated by multi-resolution analysis and self-similarity
properties in a natural image, is to take the

√
m × √

m vectors
from a decimated image, in the spatial vicinity of s0 (call this set
{x(2)

i })

3.3. Adaptive Weights

There will inevitably be some image patches in {x(1)
i } and {x(2)

i }
that resemble s0 in limited regions only. The use of the weighting
matrices can help aid the TLS denoising algorithm by giving more
weight to the pixels that collectively describe the image structure
in the center region of s0. Let A = diag(a1, . . . , am), B =
diag(b1, . . . , bn+1), A and B non-singular. The TLS image model
can be modified so that α is chosen to satisfy (5) while minimizing
‖A[E, e0]B‖2

F instead of ‖[E, e0]‖2
F . Notice that A (B) scales the

rows (columns) of [E, e0].
Owing to the techniques developed for bilateral filtering [14],

range distance metrics is used to determine A and B adaptively:

ai = exp
(−distA([xi,1, . . . , xi,n], [xc,1, . . . , xc,n])2/kA

)
bj =

{
exp

(−distB(xj , x0)
2/kB

)
, ∀j ≤ n

γ ∀j > n

where γ, kA, kB are constants, distA and distB are range dis-
tance functions, and [xc,1, . . . , xc,n] is the row in X corresponding
to the center pixel of

√
m ×√

m image patch. Intuitively, ai and
bj measure the similarity between the pair of given vectors. In the
results presented in this paper, we use:

distA(φ, ψ) = ‖φ − ψ‖2

distB(φ, ψ) = ‖H(φ − ψ)‖2,
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Table 1. Denoising methods evaluated using SSIM.
Images corrupted by noise generated by (k0, k1) =
(25, 0), (25, 0.1), (25, 0.2), respectively.

noisy proposed [9] [8] [11] [7]
0.2734 0.8528 0.8514 0.8446 0.8397 0.8278

Lena 0.1784 0.8228 0.8169 0.8066 0.7989 0.7803
0.1301 0.7969 0.7790 0.7688 0.7483 0.7269
0.4055 0.8657 0.8420 0.8213 0.8379 0.8435

Barbara 0.2888 0.8079 0.7737 0.7396 0.7739 0.7765
0.2181 0.7555 0.7073 0.6664 0.7081 0.7084
0.3494 0.7816 0.7856 0.7790 0.7724 0.7567

Boats 0.2293 0.7199 0.7275 0.7187 0.7085 0.6858
0.1677 0.6742 0.6752 0.6668 0.6479 0.6218
0.2799 0.8378 0.8319 0.8293 0.8045 0.8131

House 0.1818 0.8086 0.7981 0.7898 0.7649 0.7709
0.1300 0.7824 0.7609 0.7491 0.7156 0.7183
0.3542 0.8451 0.8427 0.8510 0.8171 0.8170

Peppers 0.2472 0.8050 0.7955 0.8021 0.7608 0.7590
0.1887 0.7737 0.7514 0.7587 0.7053 0.7035
0.6939 0.9030 0.9038 0.8922 0.9066 0.8897

F Prints 0.5168 0.8469 0.8499 0.8302 0.8505 0.8278
0.3920 0.7779 0.7927 0.7588 0.7879 0.7498

where H = diag(h1, . . . , hm) and [h1, . . . , hm] is a Gaussian
envelope centered at the center of the

√
m×√

m image patch. H
is needed because m � n is large.

3.4. Redundant Estimation

Let S0 = [s1, . . . , sp], where {si} is a collection of image patches
from s. Then our new TLS system is modified as follows:

S0 + E0 = (X + E)α, (10)

where the perturbation E0 is now m × p, and α ∈ R
n×p. A ma-

trix α satisfying (10) while minimizing ‖A[E, E0]B‖2
F is known

as the TLS solution, denoted αTLS. The solution to (10) is well
documented [2] [5].

Working with (10) has several advantages over (5). First, by
choosing to minimize the perturbation in multiple image patches
{si} simultaneously, the algorithm becomes more robust against
noise. To see this, note that A[E,E0]B is rank p [5], which offers
more freedom over the perturbation than A[E, e0]B allows. This
is in a sharp contrast to the analogous LS system, S0 + E0 = Xα,
because the LS solution that minimizes ‖E0‖2

F will be no different
than if each columns of E0 were minimized independently. Sec-
ond, assuming that {s1, . . . , sp}were picked from the same region
of the image s, there will be overlapping regions in the denoised
image patches. We benefit from this by combining some or all of
estimated pixel values that are available at each position. With this
technique, the edge artifacts are reduced and smooth surfaces be-
come significantly smoother, while the sharpness of the edges is
preserved.

3.5. Mathematical Details

In this section, we develop a method to compute αTLS from an
image corrputed by signal-dependent noise that incorporates tech-
niques in sections 3.1-3.4. We begin with (7) and (9). Define
x̄j = (

∑
i a2

i xi,j)/(
∑

i a2
i ), x̃i,j = xi,j − x̄j , X̃ = [x̃1, . . . , x̃n];

define s̄j ,s̃j ,S̃ similarly; let S̃0 = [s̃1, . . . , s̃p]. Let A[X̃, S̃0]B =
UΣV T be SVD, where Σ = diag(σ1, . . . σn+p) and σ2

i > σ2
i+1.

Partition U and V as

U = [ U1 U2 ]
n p

V =

[
V11 V12

V21 V22

]
n
p

n p
.

Then the value for α that minimizes ‖A[E, E0]B‖ while satisfy-
ing S̃0 + E0 = (X̃ + E)α is

αTLS = −B1V12V
−1
22 B−1

2 . (11)

where B1 = diag(b1, . . . , bn), B2 = diag(bn+1, . . . , bn+p).
Given the noisy image x, the general TLS problem can still be

solved without S̃0. To see this, consider

P = (A[X̃, S̃0]B)T (A[X̃, S̃0]B) = V Σ2V T . (12)

For m � n + p, P ≈ E{P}, and

P = E{(A[X̃, S̃0]B)T (A[X̃, S̃0]B)}

= B

[
PXX ST A2S0

ST
0 A2S ST

0 A2S0

]
B

where PXX = E{X̃T A2X̃}. Let us assume (9), and that for
m � n + p, x̄j ≈ s̄j . Then PXX simplifies to

PXX = S̃T A2S̃ + k2
1

m∑
i=1

a2
i diag(s̄

2
i,1, . . . , s̄

2
i,n)

+ diag((k0 + k1x̄1)
2, . . . , (k0 + k1x̄n)2)

(
m∑

i=1

a2
i

)

Since the jth diagonal entry of S̃T A2S̃ is
∑

i
a2

i s̃
2
i,j , S̃T A2S̃ can

be estimated using the following procedure:

1. Compute PXX = X̃T A2X̃.

2. Compute PXX−diag((k0+k1x̄1)
2, . . . , (k0+k1x̄n)2)(

∑
i
a2

i ).

3. Multiply diagonal entries of matrix in step 2 by (1+k2
1)

−1.

The first p rows of S̃T A2S̃ is S̃T
0 A2S̃, and the top-left p × p sub-

matrix of S̃T A2S̃ is S̃T
0 A2S̃0. Thus the matrix P is fully com-

putable. The new αTLS is computed from (11) where V is given by
the eigen decomposition of P in (12). Our best estimate for S0 is

Ŝ0 = X̃αTLS + [1, . . . , 1]T [x̄0, . . . , x̄p].

3.6. Pre-Processing

The effectiveness of the TLS denoising algorithm depends on our
ability to estimate P matrix accurately. Given δ ∼ N (0, 1), there
will be one or two pixels occasionally that stand out because the
value of δ at that pixel position is far greater than its standard de-
viation. This is problematic because the entries in X appear more
than once, degrading our estimate for P greatly.

To work around this problem, we propose to prune the outliers.
The following pre-processing procedure was used. For each pixel
location in x,

1. Crop a 5 × 5 vector from x. We will call it y.

2. Find the N th largest and N th smallest pixel values in y.

3. If the center pixel in y is larger (smaller) than the N th
largest (smallest) pixel value in y, replace the center pixel
value with the N th largest (smallest) pixel value in y.
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Fig. 1. Example cropped from “Lena” with noise (k0, k1) = (25, 0.1). Output from method in [9] (left) and proposed algorithm (right).

4. IMPLEMENTATION AND RESULTS

Our TLS algorithm is implemented with m = 23 × 23 = 529,
n1 = 5 × 5 = 25, n2 = 5 × 5 = 25, where n1, n2 are the num-
bers of vectors in {x(1)} and {x(2)}, respectively. The columns of
S̃0 are the image patches in s corresponding to {x(1)

i }. Eigen de-
composition of P , which requires O((2n1 + n2)

2) operations, is
the most computationally intensive procedure in the algorithm. We
compared our method to works published recently [7] [8] [9] [11].
Experiments are performed on well-known 8-bit gray-scale test
images. Parameters k0 and k1 were available a priori to all algo-
rithms. In table 1, performance is evaluated using structural simi-
larity index (SSIM) [15], which is a better measure of image qual-
ity than PSNR. Because [7] [9] [8] [11] assume the noise model in
(2), generalized homomorphic filtering is used to approximately
decouple the noise from the signal [3] before denoising; an inverse
filter is applied after denoising. SSIM values show that the pro-
posed method is comparable to the state-of-the-art denoising meth-
ods when k1 = 0, and is an improvement when k1 �= 0. Fig. 1
shows an example output when (k0, k1) = (25, 0.1). The pro-
posed algorithm preserves the details of the feathers on the hat, and
smoothes the homogeneous regions (e.g. cheeks and background).

5. CONCLUSION

In this paper, a new image denoising algorithm based on TLS tech-
niques was presented. An ideal image patch was modeled as a lin-
ear combination of vectors cropped from the noisy image, and we
fit the model to the real image data by allowing a small perturba-
tion in the TLS sense. A new technique to solve the TLS problem
without the knowledge of the ideal image patch when the image is
corrupted by signal-dependent noise is developed. The output im-
ages from the proposed algorithm showed improved image quality,
when compared to recently published work. Future research in this
field includes reduction of computational complexity and a more
sophisticated weighting scheme.
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