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ABSTRACT

In this work, we present and analyze an image denoising
method, the NL-means algorithm, based on a non local a-
veraging of all pixels in the image. We also introduce the
concept of method noise, that is, the difference between the
original (always slightly noisy) digital image and its de-
noised version. Finally we present some experiences com-
paring the NL-means results with some classical denoising
methods.

1. INTRODUCTION

The need for efficient image restoration methods has grown
with the massive production of photographs, often taken in
poor conditions or with deficient cameras or acquisition sys-
tems. Due to the nature of the light, the amount of pho-
tons arriving to the camera fluctuates around the true value.
These perturbations are called noise. Then, we can write

v(i) = u(i) + n(i), (1)

where v(i) is the observed value, u(i) would be the “true”
value and n(i) is the noise perturbation at a pixel i. The best
simple way to model the effect of noise on a digital image
is to add gaussian white noise. In that case, n(i) are i.i.d.
gaussian values with zero mean and variance σ2.

Several methods have been proposed to remove the noise
and recover the true image u. Even though they may be
very different in tools it must be emphasized that all of them
share the same basic remark : denoising is achieved by ave-
raging. This averaging may be performed locally: the Gaus-
sian smoothing model (Gabor [1]), the anisotropic filtering
(Perona-Malik [2], Alvarez et al. [3]) and the neighborhood
filtering (Yaroslavsky [4]), by the calculus of variations:
the Total Variation minimization (Rudin-Osher-Fatemi [5]),
or in the frequency domain: the empirical Wiener filters
(Yaroslavsky [4]) and wavelet thresholding methods (Coi-
ffman-Donoho [6]).
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Formally we define a denoising method Dh as a decom-
position

v = Dhv + n(Dh, v),

where v is the noisy image and h is a filtering parame-
ter which usually depends on the standard deviation of the
noise. Ideally, Dhv is more smooth than v and n(Dh, v)
looks like the realization of a white noise. For most de-
noising methods, n(Dh, v) contains texture and details and
therefore these are removed from the estimate Dhv.

In order to better understand this removal texture and
details, we introduce the method noise. That is, the diffe-
rence between the original (always slightly noisy) image u
and its denoised version.

Definition 1 (Method noise) Let u be an image and Dh a
denoising operator depending on a filtering parameter h.
Then, we define the method noise as the image difference

u − Dhu.

This difference measures the degree of preservation of the
true image during the denoising process. In order to pre-
serve the original features and fine structure of the image,
this method noise should be as small as possible.

We also propose and analyze the NL-means algorithm,
which is defined by the simple formula, for x ∈ Ω,

NL[u](x) =
1

C(x)

∫
Ω

e−
f(x,y)

h2 u(y) dy,

where f(x, y) =
∫

R2 Ga(t)|u(x + t) − u(y + t)|2dt, Ga is

a Gaussian kernel, C(x) =
∫
Ω

e−
f(x,z)

h2 dz is a normalizing
constant and h acts as a filtering parameter. This amounts
to say that NL[u](x), the denoised value at x, is a mean
of the values of all pixels whose gaussian neighborhood
looks like the neighborhood of x. The main difference of
the NL-means algorithm with respect to local filters or fre-
quency domain filters is the systematic use of all possible
self-predictions the image can provide.

In section 2 we give a discrete and effective procedure
for the computation of the NL-means algorithm. In section
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3 we show the consistency of the algorithm under stationa-
rity conditions. In section 4 we compute the method noise
for the Gaussian filtering and we show how the NL-means
algorithm picks up the efficient parts of the afore mentioned
methods. Finally, in section 5 we show some experiments
comparing the performance of the NL-means algorithm and
classical denoising algorithms.

2. THE NL-MEANS ALGORITHM

Given a discrete noisy image v = {v(i) | i ∈ I}, for a pixel
i, the estimated value NL[v](i) is computed as a weighted
average of all the pixels in the image,

NL[v](i) =
∑
j∈I

w(i, j)v(j),

where the family of weights {w(i, j)}j depend on the si-
milarity between the pixels i and j, and satisfy the usual
conditions 0 ≤ w(i, j) ≤ 1 and

∑
j w(i, j) = 1.

The similarity between two pixels i and j depends on
the similarity of the intensity gray level vectors v(Ni) and
v(Nj), where Nk denotes a square neighborhood of fixed
size and centered at a pixel k. The pixels with a similar grey
level neighborhood to v(Ni) have larger weights in the ave-
rage, see Fig. 1. The similarity between gray level neigh-
borhoods is computed as a gaussian weighted Euclidean di-
fference, ‖v(Ni) − v(Nj)‖2

2,a, where a > 0 is the standard
deviation of the Gaussian kernel. The application of the Eu-
clidean distance to the noisy neighborhoods raises the fol-
lowing equality

E||v(Ni) − v(Nj)||22,a = ||u(Ni) − u(Nj)||22,a + 2σ2.

This equality shows the robustness of the algorithm since
in expectation the Euclidean distance conserves the order of
similarity between pixels.

The weights are then defined as,

w(i, j) =
1

Z(i)
e−

||v(Ni)−v(Nj)||22,a

h2 ,

where Z(i) is the normalizing constant

Z(i) =
∑

j

e−
||v(Ni)−v(Ni)||22,a

h2

and the parameter h acts as a degree of filtering. It controls
the decay of the exponential function and therefore the de-
cay of the weights as a function of the Euclidean distances.

3. NL-MEANS CONSISTENCY

We show that under stationarity assumptions, for a pixel i,
the NL-means algorithm converges to the conditional ex-
pectation of i once observed a neighborhood of it. In this

Fig. 1. Scheme of NL-means strategy. Similar pixel neigh-
borhoods give a large weight, w(p,q1) and w(p,q2), while
much different neighborhoods give a small weight w(p,q3).

case, the stationarity conditions amount to say that as the
size of the image grows we can find many similar patches
for all the details of the image.

Let V be a random field and suppose that the noisy i-
mage v is a realization of V . Let Z denote the sequence of
random variables Zi = {Yi, Xi} where Yi = V (i) is real
valued and Xi = V (Ni\{i}) is R

p valued. The NL-means
is an estimator of the conditional expectation r(i) = E[Yi |
Xi = v(Ni\{i})].
Theorem 1 (Conditional expectation theorem) Let Z =
{V (i), V (Ni\{i})} for i = 1, 2, . . . be a strictly stationary
and mixing process. Let NLn denote the NL-means algo-
rithm applied to the sequence Zn = {V (i), V (Ni\{i})}n

i=1.
For j ∈ {1, . . . , n}

|NLn(j) − r(j)| → 0 a.s

The proof of the previous result can be found in a more
general framework in [7].

In the case that the additive white noise model (1) is
assumed, the next result shows that the conditional expecta-
tion is the function of V (Ni\{i}) that minimizes the mean
square error with the true image u.

Theorem 2 Let V,U,N be random fields on I such that
V = U + N , where N is a signal independent white noise.
Then, the following statements are hold.

(i) E[V (i) | Xi = x] = E[U(i) | Xi = x] for all i ∈ I
and x ∈ R

p.

(ii) The expected random variable E[U(i) | V (Ni\{i})]
is the function of V (Ni\{i}) that minimizes the mean
square error

min
g

E[U(i) − g(V (Ni\{i}))]2
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Fig. 2. Display of the NL-means weight distribution used to estimate the central pixel of every image. The weights go from
1(white) to zero(black). The algorithm acts as a convolution filter in float zones (a), as an anisotropic filter in straight edges
(b) and as a neighborhood filter in flat neighborhoods (d). On curved edges, the weights favor pixels belonging to the same
contour (c) and favors pixels with similar configurations, even they are far away (e) and (f).

Fig. 3. Image method noise. From left to right: Original
image, Gaussian filtering and NL-means.

4. THE METHOD NOISE

The method noise results from the application of the denois-
ing algorithm to the non noisy image. As we want not only
to reduce the noise but to restore the geometrical and tex-
tural features, the application of the algorithm should not
alter the original image. Following the above idea we have
proposed to analyze the difference u − Dhu.

The method noise represents the loss of information from
the original image and therefore should be as small as possi-
ble. The method noise can be computed for all previously
mentioned denoising methods. For simplicity reasons, we
only discuss the Gaussian filtering. In this case, the noisy
image v is convolved with a Gaussian kernel Gh of standard
deviation h.

Theorem 3 (Gabor 1960) The method noise of the convo-
lution with a gaussian kernel Gh is

u − Gh ∗ u = −h2

2
∆u + o(h2),

for h is small enough.

As a practical consequence, edges and texture are not well
restored since the Laplacian at these points cannot be small.

This method noise helps us to understand the performance
and limitations Gaussian filtering.

The denoising methods should adapt to the image in or-
der to preserve it. In this sense, we propose to apply the
NL-means algorithm. We visually show how the NL-means
algorithm chooses a weighting configuration adapted to the
local and non local geometry of the image, see Fig. 2.

Fig. 3 shows a visual experiment of the method noise.
The method noise displays the structures which are not well
preserved by denoising algorithms and which will be de-
graded by a further denoising process. As a consequence,
this method noise should look as similar as possible to a
white noise.

5. EXPERIMENTATION AND DISCUSSION

We display some denoising experiences comparing the NL-
means algorithm with classical denoising methods. All ex-
periments have been simulated by adding a gaussian white
noise of standard deviation σ to the true image.

For computational purposes, we can restrict the search
of similar windows in a larger ”search window” of size S ×
S pixels. In all the experimentation we have fixed a search
window of 21 × 21 pixels and a similarity square neigh-
borhood Ni of 7 × 7 pixels. If N2 is the number of pixels
of the image, then the final complexity of the algorithm is
about 49 × 441 × N2.

The 7×7 similarity window has shown to be large enough
to be robust to noise and small enough to take care of details
and fine structure. The filtering parameter h has been fixed
to 10 ∗ σ. Due to the fast decay of the exponential kernel,
large Euclidean distances lead to nearly zero weights acting
as an automatic threshold, see Fig. 2.

Due to the nature of the algorithm, the most favorable
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Fig. 4. Denoising experience on a periodic image. From left to right: noisy image (standard deviation 35), Gauss filtering,
Total variation, Neighborhood filter, translation invariant wavelet thresholding and NL-means algorithm. It seems that a
non-local algorithm is necessary to reconstruct the periodic and fine structure of the wall pattern.

Fig. 5. Denoising experience on a natural image. From left to right: Original image, noisy image (standard deviation 25), Total
Variation minimization, translation invariant thresholding and NL-means algorithm. The NL-means is able to reconstruct the
fine periodic pattern on the right side of the image while the other methods filter it as noise.

case for the NL-means is the texture or periodic case. In
this situation, for every pixel i, we can find a large set of
samples with a very similar configuration. Fig. 4 compares
the performance of the NL-means with classical local and
frequency filters.

Natural images also have enough redundancy to be re-
stored by NL-means. Flat zones present a huge number of
similar configurations lying inside the same object, see Fig.
2 (a). Straight or curved edges have a complete line of pi-
xels with similar configurations, see Fig. 2 (b) and (c). In
addition, natural images allow us to find many similar con-
figurations in far away pixels, as Fig. 2 (f) shows. Fig. 5
shows how the NL-means algorithm is able to distinguish
between white noise and periodic patterns (right side of the
image). The algorithm is able to reconstruct this fine peri-
odic pattern while the other methods filter it as noise. Table
1 displays the mean square error of the two previous expe-
riences for the different denoising methods.
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