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ABSTRACT

Steganographic methods attempt to insert data in multimedia sig-
nals in an undetectable fashion. However, these methods often
disrupt the underlying signal characteristics, thereby allowing de-
tection under careful steganalysis. Under repeated embedding,
disruption of the signal characteristics is the highest for the first
embedding and decreases subsequently. That is, the marginal
distortions due to repeated embeddings decrease monotonically.
We name this general principle as the principle of diminishing
marginal distortions (DMD) and illustrate its validity in the audio
domain using a morphological distortion metric. The principle of
DMD is used to derive a steganalysis tool that detects the presence
of hidden messages in uncompressed audio files. Detailed analysis
and experimental results are provided for the detection of spread
spectrum watermarking and stochastic modulation steganography.

1. INTRODUCTION

The goal of steganography [1, 2] is to create a covert channel
within a multimedia signal—or any other digital document—to fa-
cilitate the transmission of messages, whose content and presence
must be kept secret from unauthorized parties. While steganogra-
phy deals with concealing information in innocuous-looking cover
objects, steganalysis aims to detect the presence of these hidden
messages and—if possible—to estimate their length and even ex-
tract their contents.

The game between the steganographer and the steganalysist
may modeled as: i) the passive warden scenario, or ii) the active
warden scenario [1]. A passive warden only monitors the channel
and stops a document if there is any evidence of secret communi-
cations. On the other hand, an active warden deliberately modifies
the document to prevent any secret communication. In this paper,
we are primarily interested in the passive warden scenario and we
restrict our attention to detection of the hidden messages.

Steganalysis problem in the passive warden scenario has been
studied extensively for digital images. Authors investigated vari-
ous image characteristics in order to determine the features that are
the best indicators for hidden messages. These features include
smoothness measures, quality metrics [3], higher-order statis-
tics [4] and rate-distortion properties [5].

Today, audio files make up a significant portion of the multi-
media traffic. This constitutes a significant opportunity for the po-
tential users of steganographic methods. Nevertheless, interest in
audio steganalysis has been relatively low, despite obvious practi-
cal implications. Although some of the methods proposed for dig-
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ital images may be extended to the audio domain, it is desirable—
and often necessary—to exploit specific characteristics of audio
signals for improved detection.

Recently, Ozer et al. have investigated various distance mea-
sures in a statistical framework for audio steganalysis [6]. They
have applied numerous distance measures to the cover signal and
its denoised versions. Statistical analysis of computed distances
has revealed the best discriminant metrics, which have been sub-
sequently used to detect a variety steganography techniques.

In this paper, we describe a new approach to audio steganalysis
and make two particular contributions: First, we define a specific
non-linear transform for audio signals. This transform provides
a morphological “distortion” measure, which is very sensitive to
the changes arising from data embedding operations. Second, we
show that, under repeated embedding, the marginal morphologi-
cal distortions decrease monotonically with each iteration. We call
this phenomenon as the principle of diminishing marginal distor-
tions (DMD) and utilize it for audio steganalysis.

2. PROPOSED TECHNIQUE

Our proposed steganalysis technique is based on the effect of re-
peated data embedding on the morphological structure of the audio
signals. In this section, we define a morphological distortion mea-
sure; observe the effect of repeated data embedding on this mea-
sure; state the principle of diminishing marginal distortions; and
propose a method that utilizes this principle for audio steganaly-
sis. A quantitative analysis of the technique is presented in the
following section.

2.1. A morphological “distortion” measure for audio

Morphology is the analysis of the form or shape of objects and
images. While an equivalent concept of “shape” is more difficult to
define for audio signals, we use the term to define a particular class
of non-linear transformations that represent the inherent structure
of audio signals. These transformations are especially sensitive to
minute changes caused by the data embedding procedures.

We define the first order morphology transform as the binary
observation of the first difference:

M1(x[n]) =

{
1 if x[n] − x[n − 1] > 0
0 otherwise

(1)

where x[n] is a one-dimensional monophonic audio signal.
Similarly, we may define the N th order morphology transform

MN (x[n]) =

{
1 if ∆N (x[n]) > 0
0 otherwise

(2)
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where ∆N (·) is the N th order difference operator.
We illustrate the first order morphology transform and its sen-

sitivity to data embedding noise in a simple example. A pure sine
wave and its first order morphology is seen in Fig. 1(top). The first
order morphology value changes on the local minima and max-
ima of the sinusoid. When a low power Gaussian noise signal (a
spread spectrum watermark) is added to the signal, the morphol-
ogy changes frequently near the local extremeties of the signal (see
Fig. 1(middle)).
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Fig. 1. a) A pure sine wave and its first difference binary morpho-
logical transform. b) Signal waveform and its transform after addi-
tion of a Gaussian watermark to the sine wave. c) Signal waveform
and its transform after addition of a second watermark.

We define the morphological distortion between two audio sig-
nals as the Hamming distance between the N th order binary mor-
phologies of respective signals.

DH(x, y) = Dhamming(MN (x), MN (y)) (3)

As seen in Fig. 1, this metric may be very sensitive to the data
embedding methods.

A similar morphological distortion measure may be defined as
the change in the number of transitions in the first order morphol-
ogy of the signal. This metric corresponds to the change in the
number of zero crossing of the signals first difference.

DZC(x, y) = |ZC(∆1x) − ZC(∆1y)| (4)

where ZC(·) is the number of zero crossings.

2.2. The principle of diminishing marginal distortions

Marginal distortion refers to the change—often decrease—in some
specific measure of a signal regularity as a result of watermark em-
bedding. The principle of diminishing marginal distortions (DMD)
states that the marginal distortion of each additional watermark
monotonically decreases under repeated embedding. That is, the
impact of embedding a new watermark is less pronounced than the
impact of the previous watermark. The idea is illustrated in Fig. 2.

This principle can be readily justified for distortions on the
perceptual quality of a signal. Given a high-quality audio signal,
introduction of noise will be extremely disturbing, i.e. introduce a

Audio
Signal

w1 w2 wN

Watermarked
Signal

D1 D2 DN

D1 > D2> D3 >…. > DN

…

Fig. 2. The principle of diminishing marginal distortions. Suc-
cessively added watermarks introduce lesser morphological dis-
tortions in each iteration.

large perceptual distortion1. Yet, the same amount of noise added
to the already contaminated signal will be less disturbing, as it
is masked by the first noise. The morphological distortion mea-
sure introduced in the preceding section is similar to the perceptual
quality measures in the sense that the principle of DMD applies in
both cases. Note that the principle does not necessarily apply to
all distortion measures. A trivial example is the change in the vari-
ance of a Gaussian cover signal in response to successively added
Gaussian watermarks. The marginal change (distortion) remains
constant for all successive marks.

1st wm. 2nd wm. 3rd wm. 4th wm.
DZC 600% 40% 25% 10%
DH ∼ 5100 ∼ 4300 ∼ 4100 ∼ 4000

Table 1. Marginal distortion due to each additional watermark
(over 104 samples). A Gaussian spread spectrum watermark with
strength σ = 5.10−5 is applied to a real audio signal.

The principle of DMD can be observed for the simple pure
sinusoid example in Fig. 1. The first watermark significantly al-
ters the first order morphology of the signal, while the second
watermark has little effect on the morphology. As a result, the
morphological distortion, (DH for 104 samples), is 4910 for the
first watermark and 2532 for the second watermark —a significant
change that may be exploited for steganalysis. A similar decrease
in marginal morphological distortions is observed for real audio
signals as well (see Table. 1).

An intuitive insight for the for this observation may be stated
as follows: Application of the first watermark breaks down the
delicate morphology of the signal. As the subsequent watermarks
are applied on a signal with already broken morphology, their net
effect is limited. This is similar to smashing a piece of glass with
an hammer. The first blow shatters the glass into many pieces,
whereas the subsequent blows increase their number by an in-
significant amount. A more theoretical justification of the principle
is presented in the next section.

2.3. Steganalysis with DMD

The principle of DMD may be used for steganalysis purposes us-
ing the system seen in Fig. 3. Here, we test the unknown signal by
introducing two test watermarks and measuring the morphological
distortion DH induced by each one. In general, these distortion

1Assuming the noise power is above the just noticeable distortion
(JND) threshold.
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values for stego signals are expected to be lower as the test water-
marks are embedded after the hidden watermark. Moreover, we
expect D1 to be larger than D2 in the light of the DMD principle.
These distortion values are fed to a classifier to discriminate be-
tween original and stego signals. In our steganalysis system, we
have used a single layer feed forward neural network with fifty
hidden nodes.

wstego

D1

x

D2

wtest wtest

Fig. 3. The steganalysis system. Two test watermarks are used
to differentiate between signals with and without stego messages.
D1 and D2 are fed to a classifier.

3. ANALYSIS OF THE PROPOSED TECHNIQUE

Direct Sequence Spread Spectrum (DSSS) is well known tech-
nique for low SNR communications. It has been introduced in the
watermarking context by Cox et al. [7]. DSSS spreads a payload
bit over multiple samples/frequencies. Spreading allows for very
low amplitude embedding—which is hard to detect—and high
noise immunity. A DSSS watermark may be simulated by addition
of a Gaussian noise sequence. This simulation also represents the
stochastic modulation [8] steganography, which encodes messages
as additive noise sequences. In order to analyze the technique, we
need a model for the signal and the watermark processes. Audio
signals are often modeled as first-order auto-regressive processes
with a correlation coefficient slightly smaller than unity. We use
a simplified version of this model, motivated by the limiting case
when the correlation coefficient tends to 1. In this case, the first
order difference of the audio signal may be considered i.i.d. dis-
tributed as N (0, σs), where N (·) denotes the Gaussian distribu-
tion. The watermark is assumed to be independent of the audio
signal i.i.d. and distributed as N (0, σh). Note that the N th order
difference will eventually converge to a Gaussian under the gen-
eralized central limit theorem [9], even under significantly milder
assumptions.

The lemma below states that the expected Hamming distance
between the “stego audio” and “stego audio plus test watermark”
is less than the distance between the “unmarked audio” and “un-
maked audio plus test watermark”.

Lemma:

E[DH(MN (x + wh), MN (x + wh + wt)]

< E[DH(MN (x), MN (x + wt)]

where x is the audio signal, wh represents hidden watermark, wt

stands for test watermark.
Proof: We first derive the distribution of the N th order differ-

ence for the unmarked, unmarked plus test watermark, stego, stego

plus test watermark signals, respectively.

X1 = ∆N (x[n]) ∼ N (0, 2N−1σ2
s) (5)

X2 = ∆N (x[n] + wt[n]) ∼ N (0, 2N−1σ2
s + 2Nσ2

t ) (6)

X3 = ∆N (x[n] + wh[n]) ∼ N (0, 2N−1σ2
s + 2Nσ2

h) (7)

X4 = ∆N (x[n] + wh[n] + wt[n]) ∼ N (0, 2N−1σ2
s+ (8)

2Nσ2
h + 2Nσ2

t )

These expectations can be written in terms of the analysis win-
dow length NA, and the probability of each element of the mor-
phological string to change its sign:

E[DH(MN (x), MN (x + wt)] = p1,2NA (9)

E[DH(MN (x + wh), MN (x + wh + wt)] = p3,4NA(10)

These quantities may also be derived from the distributions in
(5)-(8).

pi,j =

∫
xi,xjεS

pXi,Xj (xi, xj) · dxidxj (11)

where (i, j) takes the values (1, 2) or (3, 4).
These joint probability functions are derived by inspection:

pXi,Xj =
1

2π
√

σ2
i 2Nσ2

t

exp (
−x2

i

2σ2
i

) · exp (
−(xj − xi)

2

2N+1σ2
t

) (12)

The area where the sign change occurs is:

S = {xi, xjεR|{xi > 0, xj < 0}or{xi < 0, xj > 0}}
Evaluating the integral (11) over area S provides:

pi,j =
1

2
− arctan

√
k/2

π
(13)

where k takes the value of σ2
s

σ2
t

for p1,2 and σ2
s+σ2

h

σ2
t

for p3,4.

Note that pi,j is a strictly decreasing function of the ratio of
unmarked (/stego) signal variance over the test watermark vari-

ance, or k. As σ2
s+σ2

h

σ2
t

>
σ2

s

σ2
t

for any non-zero watermark variance

σ2
h, the lemma should be true. Moreover, this also proves that the

first watermark addition has the highest impact, that is p1,2 > p3,4.

4. EXPERIMENTAL RESULTS

We assembled a database of 200 uncompressed (16-bit PCM) au-
dio segments, each of which is taken from a different track of var-
ious commercial music CDs. Musical styles included classical,
popular, blues, country, ethnic and others. In order to simulate
the DSSS [7] and stochastic modulation [8] steganographic tech-
niques, we added a white Gaussian pseudo-random noise sequence
to each segment. A neural network classifier has been trained on
150 original and 150 corresponding watermarked segments. The
remaining 100 segments (50 original, 50 watermarked) are used
for testing. The experiments are repeated for different watermark
strengths (noise standard deviations, σ), which control the robust-
ness, capacity and undetectability of the watermarks.

The distribution of original and stego (σ = 5.10−4) seg-
ments for the Hamming morphological distortion metric (DH , or-
der N = 1000) is shown in Fig. 4. The horizontal and vertical
axes are the distortion due to addition of the first and the second
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Fig. 4. Scatter plot for unmarked (“+”) and stego (“*”) files. Hor-
izontal and vertical axes are the morphological Hamming distor-
tions DH (N = 1000) due to application of the first and the sec-
ond test watermarks, respectively. Stego files are clustered near
the origin.

test watermarks (σ = 5.10−4), respectively. Note that the previ-
ously marked stego segments are clustered near the origin.

The detection performances of the neural network classifier
trained for different watermarked strengths2 is tabulated in Ta-
ble. 2. Note that the algorithm performs very well even when
strength of the embedded watermark is very low.

Watermark Detection False Miss
Strength Rate Alarm Rate

σ = 5.10−2 100% 0% 0%
σ = 5.10−3 94% 6% 0%
σ = 5.10−4 88% 8% 4%
σ = 5.10−5 80% 12% 8%

Table 2. Neural network classification results with DH

metric.(N = 1000, segment length is 226 ms (104 samples) and
watermark strength is σ = 5.10−4.)

Although the analysis in the preceding section is focused on
the DSSS watermarks, the principle of DMD and the proposed
morphological metrics may be used for detection of other stegano-
graphic techniques. In order to support this claim, we have investi-
gated the change in number of zero crossings of the first difference
(DZC ) for a number of data hiding techniques. The results are
shown in Table. 3 in terms of percent changes. It is promising
that the majority of methods leads to significant changes in signal
morphology.

5. CONCLUSIONS AND FUTURE WORK

We have defined a morphological distortion measure and set forth
the principle of diminishing marginal distortions. Based on this

2In each case, the strength of the test watermarks is matched to the
strength of the embedded watermark.

FHSS DSSS HAS Phase Echo
Mask. Coding Coding

SNR (dB) 42 50 25 10 5.5
ZC(∆1x)
increase 13% 4% 41% 78% 360%

Table 3. Effect of various audio marking methods on the signal to
noise ratio (SNR) and the morphology of the signal. In most cases,
there is a significant increase in the number of zero crossings for
the signal’s first order difference.

principle, we have developed an audio steganalysis technique us-
ing a neural network for classification. The proposed technique
has been shown to be very effective against DSSS watermarking
and stochastic modulation steganography techniques.

In our future work, we will investigate the use of proposed
steganalysis tool for detection of other steganography techniques.
Moreover, we are investigating other morphologic measures with
potentially better discriminant powers. This may ultimately lead
to the definition of measures which are dependent on specific
steganography techniques. In that scenario, a bank of detection
filters (with different morphology measures) has to be used for
steganalysis.
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