
USING PERCEPTUAL MODELS TO IMPROVE FIDELITY AND PROVIDE INVARIANCE TO
VALUMETRIC SCALING FOR QUANTIZATION INDEX MODULATION WATERMARKING

Qiao Li, Ingemar J. Cox

Departments of Computer Science and Electronic and Electrical Engineering,University College London
Torrington Place, London, WC1E 7JE, England. Email: q.li@ee.ucl.ac.uk, ingemar@ieee.org

ABSTRACT

Quanitization index modulation (QIM) is a computationally
efficient method of watermarking with side information. This
paper proposes two improvements to the original algorithm.

First, the fixed quantization step size is replaced with an
adaptive step size that is determined using Watson’s percep-
tual model. Experimental results on a database of 1000 im-
ages illustrate significant improvements in both fidelity and
robustness to additive white Gaussian noise.

Second, modifying the Watson model such that it scales
linearly with valumetric (amplitude) scaling, results in a QIM
algorithm that is invariant to valumetric scaling. Experimental
results compare this algorithm with both the original QIM and
an adaptive QIM and demonstrate superior performance.

1. INTRODUCTION
Digital watermarking can be best modeled as communica-

tion with side information [1]. The available side information
is the original cover Work or host signal, which is entirely
known to the watermark embedder (analogous to the trans-
mitter). Earlier models of watermarking were also communi-
cations based, but the cover Work was modeled as one of two
unknown noise sources. The second noise source modeled the
distortions that occur after embedding but before detection.
Costa showed [2] that the channel capacity of a communica-
tions channel with two noise sources, one of which is entirely
known to the transmitter, but both unknown to the receiver,
is equivalent to a channel in which the known noise source is
absent. It is now recognized that this research has very impor-
tant implications for digital watermarking. However, Costa’s
paper did not provide a practical method of implementation.

Quantization index modulation (QIM), first proposed by
Chen and Wornell [3], uses a structured lattice code to pro-
vide a computational efficient watermarking algorithm with
high data capacity. While dithering was proposed to improve
the performance and reduce perceptual distortion, the quanti-
zation step size is fixed. However, it is well-known that im-
provements in image fidelity and robustness can be achieved
by adapting the watermark strength based on the local percep-
tual characteristics of the cover Work.

The most serious disadvantage of QIM has been its ex-
treme sensistivity to valumetric scaling. Even small changes
in the brightness of an image, or the volume of a song, can
result in dramatic increases in the bit error rate.

Several papers [4, 5, 6] have addressed this issue. Eggers
et al [4] proposed to estimate the valumetric scaling by “se-
curely embedd[ing] SCS pilot watermark”. However the need
for a calibration problem may lead to security weaknesses.
Lee et al [5] proposed estimating the global scaling factor
using an EM algorithm, which does not need a pilot water-
mark. However, they note that the “complexity could be im-
practical”. The closest work to ours is that of Oostveen et al
[6] which uses a simple perceptual model based on Weber’s
law. We compare our methods with theirs and demonstrate
improved performance.

Section 2 discusses the embedding and detecting proce-
dures for QIM. Section 3 describes Watson’s perceptual model
and Section 4 shows how this model can be used to adap-
tively set the quantization step size. Section 4.1 experimen-
tally demonstrates significant improvements. Section 5 then
describes a modification to Watson’s model such that it scales
linearly with valumetric changes. This modified perceptual
model is then used to choose the quantization step size and
Section 5.1 provides experimental verification of the valumet-
ric invariance properties. Experimental comparison is also
provided between the new algorithm and the original algo-
rithm of [7] and the valumetric invariant method of [6]. Sec-
tion 6 summarizes our results.

2. QUANTIZATION INDEX MODULATION

Watermarking with side information is modeled by the
communication system shown in Figure 1. The message, m
and the cover Work or host signal, x, (i.e. image or song),
are input into the watermark embedder, which outputs a wa-
termark, w that is added to the cover Work to produce the wa-
termarked Work, y. The watermarked Work then undergoes a
number of distortions that are modelled as an unknown noise
source, v. The watermark detector receives a distorted, water-
marked Work, r, i.e. r = x + w + v, and decodes a message
m̂.
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Fig. 1. Watermarking as a communication system
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2.1. Embedding of QIM
A quantizer is a function that maps a value to the nearest

point belonging to a class of pre-defined discontinuous points.
Here, function round(.) denotes rounding value to the nearest
integer and the standard quantization operation with step size
∆ is defined as Q(x, ∆) = round( x

∆ )∆
QIM embeds a message by first modulating an index or

sequence of indices with a message to be embedded and then
quantizing the host signal with the associated quantizer or se-
quence of quantizers. Let ∆ be the quantization step size and
L represent the length of the host signal x and the message m
(we embed one bit per sample). If dithering is used, then we
choose d[n, 0] pseudo-randomly with a uniform distribution
over [−∆/2, ∆/2]. and

d[n, 1] =
{

d[n, 0] + ∆/2, d[n, 0] < 0.
d[n, 0] − ∆/2, d[n, 0] > 0.

n = 1, 2, . . . , L.

(1)
Here d[n, 0] or d[n, 1] is used for embedding message bit

“0” or “1” respectively. The watermarked signal is given by:

yn(xn, mn) = Q(xn + d[n,mn],∆) − d[n, mn] (2)

2.2. Detecting with QIM: Hard and Soft Decision
During detection, the detector calculates two signals

Sr(n, 0) and Sr(n, 1) by embedding ”0” and ”1” into the re-
ceived signal r separately, in the same manner as Equation (2).
The detected message bit is then determined by judging which
of these two signals has the minimum Euclidean distance to
the received signal r

m̂n = argmin︸ ︷︷ ︸
l∈0,1

(rn − Sr(n, l))2 (3)

The above description embedded one bit per sample. In
practice, we usually spread one message bit into a sequence
of N samples. One way to achieve this is to use a rate 1/N
repetition encoding. Detection can still be performed on a one
bit per sample basis. Rate 1/N repetition decoding is finally
employed to obtain the message. We refer to this as Hard
Decision detection.

Alternatively, in the detector we can accumulate the two
Euclidean distance for N samples and then determine the de-
tected message bit, i.e.,

m̂n = argmin︸ ︷︷ ︸
l∈0,1

∑nN
h=(n−1)N+1(rh − Sr(h, l))2,

n = 1, 2, . . . , L/N.

(4)

The code rate is also 1/N but this Soft Decision decoding usu-
ally outperforms hard decision decoding.

For non-adaptive QIM, the quantization step size is in-
dependent of the content. However, it is well known that
the ability to perceive a change depends on the content. For
example, the human visual system is much less sensitive to
changes in heavily textured regions and much more sensitive
to changes in uniform regions. To account for this, we propose
using a perceptual model to automatically select the quantiza-
tion step size at each sample.

3. WATSON PERCEPTUAL MODEL
In this section, we describe the Watson’s perceptual model

[8]. This model estimates the perceptibility to changes in indi-
vidual terms of an image’s block DCT. We denote one term of
the kth block of the cover Work, C, by C[i, j, k], 0 ≤ i, j ≤ 7.
C[0, 0, k] is the DC term, i.e.,the mean pixel intensity in the
block. Watson’s model consists of a sensitivity function, two
masking components based on luminance and contrast mask-
ing, and a pooling component.

Sensitivity
The model defines a frequency sensitivity table, t. Each

table entry, t[i, j], is approximately the smallest magnitude
of the corresponding DCT coefficient in a block that is dis-
cernible in the absence of any masking noise. The resulting
frequency sensitivity table is shown in [9]. Note that it is a
constant value table.

Luminance Masking
Luminance adaptation refers to the fact that a DCT coeffi-

cient can be changed by a larger amount before being noticed
if the average intensity of the 8×8 is brighter. The luminance-
masked threshold, tL[i, j, k], is given by

tL[i, j, k] = t[i, j](Co[0, 0, k]/C0,0)αT (5)

where αT is a constant with a suggested value of 0.649,
Co[0, 0, k] is the DC coefficient of the kth block in the orig-
inal image, and C0,0 is the average of the DC coefficient in
the image. Alternatively, C0,0 may be set to a constant value
representing the expected intensity of images.

Contrast Masking
Contrast masking, i.e., the reduction in visibility of a change

in one frequency due to the energy present in that frequency,
result in a masking threshold, s[i, j, k], given by

s[i, j, k] = max (tL[i, j, k], |Co[i, j, k]|0.7tL[i, j, k]0.3) (6)

The final threshold,s[i, j, k], estimates the amounts by which
individual terms of the block DCT may be changed before
resulting in one JND. We refer to these thresholds as slack.

4. ADAPTIVE QIM BASED ON WATSON MODEL
We can use the slacks of Equation (6) to adaptively select

the quantization step size. The adaptive QIM watermarking
system is schematically shown in Figure 2. The cover Work
is converted to the DCT domain and the coefficients serve as
the host signal x. The slacks from Watson model are used
to determine ∆. The message m is embedded by the QIM
embedder to obtain watermarked signal y. The watermarked
work can be retrieved by inverse DCT of y. After transmis-
sion, the received Work is used to generate a received signal r
and estimated ∆̂. Finally, The message m̂ is detected by QIM
detector.

Note that we use the original Work to compute the quan-
tization step size for each sample during embedding, and we
use the distorted watermarked Work to compute the quantiza-
tion step size for each sample during detection. If these two
step sizes are not the same, then a bit error is very likely to
occur. In practise, very good correspondence is achieved.
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Fig. 2. Adaptive QIM watermarking system based on Watson
model.

The quantization step size for QIM is determined by the
slacks and a global constant, G, which can be adjusted to alter
the watermark strength.

4.1. Experimental results
Figure 3 shows the bit-error-rate (BER) for as a function

of the additive white Gaussian noise strength. Results for
both our adaptive method and the original algorithm of [3] are
provided. In both cases, we adjusted the watermark strength
such that the document to watermark ratio(DWR) is 35dB.
For fixed quantization step size, ∆ = 2.1. Here, DWR =
10 log10(

σ2
x

σ2
w

) and w = y − x. Each point on a curve is the
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Fig. 3. Robustness versus Gaussian noise

BER averaged over 1000 images from the Corel database.
The original QIM algorithm has superior performance for

low noise. We believe this is due to discrepancies between the
corresponding estimated quantization step sizes at the embed-
der and the decode.

However, when the standard deviation in the noise ex-
ceeds 1.5, the adaptive method is clearly superior. Conversely,
as the standard deviation of the noise approaches the fixed
quantization step size, the performance of the original algo-
rithm degrades rapidly. Note also, that the superior perfor-

mance of our algorithm is achieved with a very low Watson
distance of 4.9 (i.e. very high fidelity) compared with the
orginal method which has a Watson distance of 28. Thus, im-
proved robustness and improved fidelity have been simultane-
ously achieved.

Unfortunately, despite the new method’s superior perfor-
mance under additive white Gaussian noise conditions, it re-
mains vulnerable to amplitude scaling. When the amplitude of
image is scaled by factor of β, the resulted luminance-masked
threshold (marked as t̂L[i, j, k] ) is calculated as:

t̂L[i, j, k] = t[i, j](
βCo[i, j, k]

βC0,0
)αT = tL (7)

i.e. tL does not scale linearly with amplitude scaling. In fact,
referring to equation (6), the slack and ∆̂ are not proportional
to scaling factor β.

5. ADAPTIVE QIM WATERMARKING BASED ON
MODIFIED WATSON MODEL

To be robust to valumetric scaling, we want the estimated
∆̂ to be multiplied by β when the amplitude of the signal is
scaled by β. To this end, we modify the luminance masking
in Equation (5) to be tML , given as:

tML [i, j, k] = tL[i, j, k](C0,0/128)
= t[i, j](Co[0, 0, k]/C0,0)αT (C0,0/128) (8)

C0,0 is the average of DC components of the image, we
have chosen it to be divided by 128 (the mean pixel bright-
ness). The modified slack is then given by:

sM [i, j, k] = max (tML [i, j, k], |Co[i, j, k]|0.7tML [i, j, k]0.3)
(9)

Thus after the modification, when the image is amplitude scaled
by factor of β, the luminance masking and slack scale linearly
with β. The modified slack can then used to determine the step
size ∆M

n . When the image is scaled by factor of β, the esti-
mated quantization step size ∆̂M

n is theoretically also scaled
by β. This provides an adaptive QIM algorithm that is invari-
ant to valumetric scaling.

5.1. Experimental Results
For evaluation purposes, we again use a database of 1,000

images, each of dimension 512 × 512. A binary message of
length 8192 bits is embedded into each image. We extract
62 DCT coefficients from each 8 × 8 block. The entire se-
quence of 62× 4096 coefficients are then pseudo-randomized
and each bit of the message is embedded in 31 random coeffi-
cients. This is equivalent to embedding two bits in each block
of the image.

The watermarking schemes evaulated are marked as:
(A) The original non-adaptive QIM scheme of [7] using soft-
decision detection
(B) The adaptive QIM scheme of [6] using hard decision de-
tection
(C) Adaptive QIM based on regular Watson model, soft deci-
sion detection
(D) Adaptive QIM based on modified Watson model, hard de-
cision detection
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(E) Adaptive QIM based on modified Watson model, soft de-
cision detection

To compare the performance of the different schemes, we
fix DWR to be 35dB. However, while the DWR is the same
for images watermarked with the five algorithms, their aver-
age Watson distance between watermarked and original image
differ considerably as shown in Table 1.

Scheme A B C D E
Watson Distance 28 43 4.9 6.8 6.8

Table 1. Average Watson distance for different methods.

Table 1 shows that the three adaptive schemes proposed
here have very much lower perceptual distortion as measured
by Watson’s distance. Importantly, the modification to the
Watson distance used in methods D and E to provide robust-
ness againsts valumetric scaling, produces only a small degra-
dation in image quality and remains much better than methods
A or B.

The performance of scaling robustness test for all schemes
are shown in Figure 4 We observe that for very small changes
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Fig. 4. Robustness versus amplitude scaling

in scale, 0.9 ≤ β ≤ 1.1, the original algorithm A performs
as well or better than the others. Our method C has poorer
performance in this range, but for larger scale changes, it has
similar or superior performance. It is also important to note
that this is achieved with a perceptual distortion of less than
20% of that of method A (see Table 1).

Both algorithms A and C are not designed to be invari-
ant to valumetric scaling. Bit error rates of greater than 10%
occur for β < 0.8 and β > 1.1. In contrast, Oostveen et
al’s method B and our methods D and E show much better
robustness to scale changes. Clearly method E outperforms
all others with a BER that never exceeds 5% over the range
of β tested. To ensure that this performance was not due to
soft decoding alone, method D, while performing worse than

method E is still superior to Oostveen et al’s method (which
also uses hard decoding).

Finally, we again note that while the perceptual distortion
introduced by methods D and E is greater than for method C,
the modification to the Watson model has only resulted in a
small degradation in quality. Importantly, methods D and E
have considerably higher quality than previous algorithms A
and B.

6. CONCLUSION
We have proposed two modifications to QIM. First we use

Watson’s perceptal model to adaptively change the quantiza-
tion step size. Experimental results confirm that for the same
DWR, the perceptual distortion is reduced by over 80%.

Second, we modified Watson’s perceptual model so that
the adaptive QIM scheme is invariant to valumetric scaling.
Experimental results demonstrate that using soft decision de-
coding, the BER does not exceed 5% over a scale range of 0.5
to 1.5. The perceptual distortion introduced by this method is
much lower than previous methods.

Finally, we note that since the adaptive step size is com-
puted locally, we would expect the algorithm to also be robust
to spatially-variant scale changes. Further work needs to be
done to verify this.
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