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ABSTRACT 

In this paper, a Switching Kalman Filter (SKF) with a 
Generalized Pseudo Bayesian (GPB) algorithm of order 1 
is applied to the problem of speech enhancement. It is 
proposed to use the masking properties of human auditory  
systems as a perceptual post-filter concatenated with the 
GPB algorithm. Experiments show that the proposed 
algorithm can achieve an improvement both in terms of 
speech quality (PESQ score, ITU-T P.862) and of word 
recognition rate at low SNR. 

1. INTRODUCTION 

Hidden Markov Models (HMM), which are used widely in 
speech recognition, have also been proposed for speech 
enhancement tasks [1]. In these methods, the speech time 
signal is split up into a number of overlapping blocks; 
assuming that signals in each block are stationary. An 
autoregressive (AR) model is then applied. A problem 
with this approach, however, is that the framing often 
results in a relatively poor temporal resolution for fast 
varying speech sounds such as plosives [2]. Alternatively, 
a hidden filter model or the autoregressive Hidden Markov 
Model (AR-HMM) have been suggested in [2],[3]. By 
embedding AR models into dynamic Markov chains, AR-
HMMs were  shown to be suitable for non-stationary 
signal analysis. The Kalman filtering problem for such 
models includes a weighted sum of filters operating 
interactively in parallel, also known as the Switching 
Kalman Filters (SKF)[4],[5],[6],[7]. 

An important special problem with SKF is that the 
optimal minimum mean squared error estimator involves a 
bank of filters tuned to all possible parameter histories, 
which makes the cost in computation grow exponentially 
with data length. To solve this problem, several sub-
optimal estimation algorithms have been proposed, 
including the Generalized Pseudo-Bayesian (GPB) 
algorithm [6] and the Interacting Multiple Model (IMM) 
algorithm [7]. They have been used mostly in the target-
tracking problems. The IMM algorithm has recently been 
applied to the AR-HMM model for speech enhancement in 

[5] and compared with a Separate Multiple Model (SMM) 
algorithm suggested in [8]. 

In this paper, we investigate the use of a Switching 
Kalman Filter with a GPB of order 1 (GPB1) algorithm 
incorporating the masking properties of human auditory 
systems in a perceptual post-filter as in [9], to enhance 
noisy speech. Simulations show that an improved 
performance in speech quality or word recognition rate in 
low SNR can be obtained with the proposed algorithm 
compared with [5]. The rest of this paper is organized as 
follows: Section 2 describes how to model a clean speech 
signal by an AR-HMM model. The GPB1 algorithm with a 
perceptual post-filter is introduced in Section 3.  Section 4 
describes the experiments and presents the results. 
Conclusions are given in Section 5. 

2. SIGNAL AND NOISE MODEL 

Consider a Markov chain with N discrete hidden states, 
( )Nst ,,1K∈  and a state transition matrix 

( ) ( )jiZisjsP tt ,1 === − . For time t, the speech signal 

)(tx conditioned on state ist =  is described as:  

)()( 1 teXAtx iti += −     (1) 

where )](),...,1([ paaΑ iii =  is the vector of p  AR 

coefficients on state i, T
t ptxtxX )](),...,1([1 −−=− , and  ei(t)

are Gaussian noise processes with variances iQ .

The parameters of the AR-HMM can be estimated 
using an Expectation-Maximisation (EM) algorithm. The 
details of the process can be found in [4]. For l multiple 
training sequences, the result is given here:    
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where )|Pr( :1 tt
i
t xis ==γ  is the probability that the 

HMM is in state i at time t and is calculated by the 
forward-backward algorithm [10], and ty  represents the 

noisy speech. When the measurement noise tw  is assumed 

additive white Gaussian, the state space model conditioned 
on ts  can be written as:  

tsttst eGXFX += −1     (5) 

ttt wXHy +=      (6) 
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where 1−pI  is an identity matrix of size 1−p  and 10 −p  is 

a column of 1−p  zeros. The variance R of wt can be 

estimated from speech-free segments. In our experiments, 
it is estimated from the first 600 speech samples which are 
assumed to be noise. 

3. PSEUDO BAYESIAN ALGORITHM WITH A 
PERCEPTUAL POST-FILTER 

Some notations are first defined: 

],|[ :1| jsyXX ttt
j
tt =Ε=     (9)                                  

],|cov[ :1| jsyXV ttt
j
tt ==    (10) 

),|( 1:1 jsyyrL ttt
j
t =Ρ= −     (11). 

Given a noisy speech, each estimate tX  is found from a 

modified Switching Kalman Filter with the following steps 
performed in sequence: 
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The definition of Filter is as follows: 
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Fig 1. Comparison of GPB1 and IMM algorithms

1
1

)( −
−= j

t
Tj

tt
j

t qHVK      (19) 

( )j
t

j
t

j
t qeNL ,0;=      (20) 

j
t

j
t

j
tt

j
tt

eKXX += −1
     (21) 

( ) Tj
t

j
t

j
t

j
tt

j
tt

j
t

j
tt

KqKVVHKIV −=−= −− 11
   (22) 

Collapse is a moment matching function, defined as: 
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The enhanced speech signal )(ˆ tx  (before post-

filtering) is equal to the first component of the estimated 

ttX | . It is the first-order Generalized Pseudo-Bayesian 

(GPB1) estimator [6], which limits the memory of the 
model history by combining the estimates from all models 
into a single estimate at the end of each processing cycle. 
If there are 2 hidden states in the AR-HMM model, Fig. 1 
shows the comparison of the GPB1 and IMM filtering 
algorithms [4]. The collapsed output of the switching 
Kalman filter is post-filtered on a frame by frame basis 
with a frame length of 128 samples, using the masking 
properties of human auditory systems. The following 
procedure is taken [9]: 
(1) Computing a 256-point FFT from a )(ˆ tx  sequence to 

get the speech spectrum )(ˆ
iS ω .

(2) Adding up the energies of the FFT values in each 
critical bank [9], then convolving with the following 
spread function to get the spread critical band 
spectrum C(k):
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2)474.0(15.17)474.0(5.781.15)( ++−++= kkkSF (25)

(3) Calculating the relative threshold offset O(k) in 
decibels  as: 

5.5)1()5.14()( αα −++= kkO   (26) 

        whereα  is defined as: 

)1,min(
maxdB

dB

SFM

SFM
=α     (27) 

dBSFM dB 60max −=  and 
m

m
dB A

G
SFM 10log10=

( mG  is the geometric mean of the power spectrum, 

and mA  is the arithmetic mean of the power 

spectrum). 
(4) Calculating the masking threshold )(kM  by 

subtracting the threshold offset O(k) from the spread 
critical band spectrum C(k):

( )]10/)([()]([10log10)( kOkCkM −=    (28) 

(5) Mapping the total masking level 
)18,,2,1()( K=kkM t  in each critical band to the 

frequency domain (FFT bins), to obtain 
)( iT ω ( 256,2,1 L=i ).

(6) Performing the thresholding on half of the speech 

spectrum )(ˆ
iS ω :          (29),(30) 
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where 128,2,1 L=i , and α  is the tonality coefficient 

computed with the simultaneous masking threshold. 

The other half of the masked speech spectrum is 

obtained by symmetry. 

(7)  Doing an IFFT using )(
~
ˆ

iS ω  and the phase of 

)(ˆ
iS ω , keeping the last 128 values of the size-256  

IFFT outputs to obtain the enhanced speech signal. 

A new threshold setting different from [9] is used in 
step (6). The tradeoff between noise reduction and speech 
distortion has been modified to obtain a better 
performance in speech recognition (i.e. in this work both 
speech quality and recognition rate are to be improved).  

5. EXPERIMENTS 

This section presents the performance evaluation of the 
proposed speech enhancement method. First, the 
performance is measured in terms of speech quality with 
the ITU-T P.862 PESQ score [11], which has a close 
match with subjective speech quality scores. Then the 
enhancement method is tested as a front-end to 
compensate the noise for robust speech recognition.  

The speech data is from the "Numbers v1.3" corpus 
provided by Oregon Health & Science University (OGI). 
The corpus is a collection of 8kHz telephone speech data, 
including both isolated digit and continuous digit strings 
[12]. In our experiment, speech files with fixed-length 5 
connected digits were used.  In the testing stage, 
background noises (from the ITU-T Supplement P.23 
database) were artificially added to the speech signals by a 
computer, with SNR varying from 0 dB to 10dB.  

All the experiments use the same AR-HMM speech 
model which is built by 20 training strings. The order of 
the AR model is 10, and the number of states for the AR-
HMM is five. HMMs trained using the EM algorithm are 
guaranteed to reach only a local maximum likelihood 
solution and are sensitive to the initialization. In our 
experiment, the AR-HMM model is initialized using a 
procedure of Kalman filter AR model described in [3]. 
Unlike in [5], in our experiments the training speech and 
speakers will not appear in the enhancement tests. Tables 
1 and 2 first show the average PESQ score of the proposed 
method for the 20 speech files in the test set, and compare 
the proposed algorithm with the GPB1 and the IMM [5]. 
There is not much difference between the PESQ scores for 
the IMM algorithm and the GPB1 algorithm. But with the 
perceptual post-filter, the GPB1 algorithm can produce 
PESQ scores of  0.1 to 0.2 better than the IMM algorithm.  

Secondly, the proposed enhancement algorithm is 
applied as a pre-processor to an automatic speech 
recognition (ASR) system. For the connected digits 
recognition, each phoneme is represented by the left-to-
right monophone HMM containing 5 states (3 observation 
states, an entry and an exit state)  and 4  mixtures  for each  

Input SNR 10dB 5dB 0dB 
SKF (IMM) 2.59 2.25 1.89 
SKF (GPB1) 2.60 2.27 1.89 
Proposed 2.66 2.41 2.11 
Table 1 Results for speech with white noise (PESQ scores) 

Input SNR 10dB 5dB 0dB 
SKF (IMM) 2.63 2.33 2.05 
SKF (GPB1) 2.62 2.31 2.03 
Proposed 2.67 2.40 2.10 
Table 2 Results for speech with street noise (PESQ scores) 
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state. They were trained using 550 digit strings spoken by 
different people and then evaluated on an independent test 
set. Therefore, it is the kind of system which is trained in a 
clean environment and tested in noisy ones. The acoustic 
features are 39 Perceptual Linear Prediction (PLP) 
coefficients, with 12 PLP cepstrum, log energy and their 
first and second order derivatives. Since the speech data is 
collected from both analog and digital phone lines, 
cepstrum mean normalization is applied to remove the 
input channel difference. Tables 3 and 4 show the average 
word recognition rate in 8 training iterations for white 
noise and street noise. The proposed algorithm is 
compared to the GPB1, the IMM, the conventional 
spectral subtraction (SS) and the Kalman filter algorithm 
[13]. ‘No NR’ denotes a result without noise reduction.   

The results show that all the Switching Kalman 
Filtering algorithms produced a performance advantage 
over the Kalman filter and the spectral substraction 
methods. For 0dB SNR, the proposed algorithm performs 
better than all the other methods. For 5 dB SNR, it also 
produced results as good or better than the GPB1 and the 
IMM algorithms. For 10 dB SNR, and especially for the 
case of white noise, the proposed algorithm degrades 
slightly the performance compared to the GPB1 and the 
IMM. The explanation could be that speech recognizers 
are more sensitive to speech distortion compared to the 
way the signal is perceived by human listeners.  

Normally, speech recognition produces better results if 
noise is added to the templates rather than if it is 
subtracted from the data [14]. But at low SNR, it is more 
advantageous to enhance speech in order to improve the 
recognition rate. In this case, our enhancement method 
would work well as a pre-processor. 

6. CONCLUSIONS 

Given the AR-HMM model trained from clean speech, the 
recursive Switching Kalman Filters provide a better 
performance than conventional Kalman filters. To further 
improve the performance of the SKF using a GPB 
algorithm, this paper proposed a GPB algorithm with a 
perceptual post-filter. Experiments have shown that the 
proposed algorithm can achieve an improvement both in 
terms of speech quality (PESQ score, ITU-T P.862) and of 
word recognition rate at low SNR. 
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Input SNR >25dB 10dB 5dB 0dB 
No NR 97.77% 77.8% 66.7% 16.6% 

SS ⁄ 80.5% 66.7% 49.5% 
KF ⁄ 84.4% 75.0% 59.8% 

SKF
(IMM)

⁄ 90.5% 80.0% 64.4% 

SKF
(GPB1) 

⁄ 89.0% 78.1% 67.1% 

Proposed ⁄ 84.4% 79.8% 69.6% 
Table 3  Word recognition rate for speech mixed with 

white noise 

Input SNR >25dB 10dB 5dB 0dB 
No NR 97.77% 81.1% 75.6% 28.9% 

SS ⁄ 72.2% 63.3% 45.6% 
KF ⁄ 84.4% 73.3% 53.3% 

SKF
(IMM)

⁄ 86.7% 80.0% 66.7% 

SKF
(GPB1) 

⁄ 87.8% 80.0% 67.8% 

Proposed ⁄ 85.6% 80.0% 68.9% 
Table 4  Word recognition rate for speech mixed with 

street noise
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