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ABSTRACT

A time-domain vector formulation is presented on analysis and 

solution of the adaptive decorrelation filtering (ADF) system for 

blind speech source separation in additive background noises.

The formulation leads to a derivation of a gradient descent

algorithm and offers insights into the impact of uncorrelated 

white noises on ADF system. A new noise-adapted ADF 

algorithm is then derived by modifying the decorrelation

criterion function to exclude noise impact on cross-correlation 

information of ADF outputs. Speech separation simulations were

based on convolutive mixtures of TIMIT speech data generated

with long impulse responses measured in real reverberant 

acoustic experiment. The proposed algorithm significantly

improved convergence rate, gains in target-to-interference ratio

at ADF outputs, and phone accuracy of separated target speech

source.

1. INTRODUCTION 

Blind separation of simultaneous speech signals in real acoustic

environment is a difficult and important topic, with potential 

applications in automatic hands-free speech recognition (ASR)

and assistive speech communication. Adaptive decorrelation

filtering (ADF) algorithm [1] and certain ICA techniques for

convolutive mixtures [2] offer possible solutions for this task. 

Weinstein et al [1] established decorrelation as an

estimation criterion for blind separation of convolutive mixtures 

of speech signals. For a general convolutive mixing system,

decorrelation cannot guarantee unique solution and an FIR 

constraint needs to be imposed on the form of the mixing model. 

For real acoustic paths, the constraint can be met as long as FIR 

taps are long enough.

Recently, effective preprocessing and post filtering 

techniques have been developed for ADF to work in reverberant 

acoustic conditions [3]. However, diffusive noise adds another 

level of difficulty to the blind source separation task since both 

filtering and adaptation processes of ADF model are affected by

noise. Previously, frequency domain analysis of noise effects on 

ADF was made in [4] and a subspace based noise-reduction front

end was used to improve the working conditions for ADF system.
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However, there were no effective methods proposed to make

ADF robust in the presence of noise. 

This paper formulates the ADF model in a time-domain 

vector form to derive a gradient descent algorithm and provide 

analysis of noise effects. A noise-adapted ADF algorithm is then 

proposed to improve the performance of ADF de-coupling filter

estimation. Speech source separation and phone recognition 

simulations were conducted for the new method.

2. ADF SYSTEM MODEL 

Figure 1. ADF separation system model in background noise 

For a two-speaker-two-microphone system, the noise-free signal 

mixing process (nj(t)=0) is modeled as 
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where )()()( zHzHzG jjijij
are the cross-coupling filters from

the jth speaker to the ith microphone. The ADF source 

separation model is shown in Fig.1, where the cross-coupling 

filters gij=[g(0), ,g(N-1) ]T, with ( )T for transpose, are to be 

identified. The following notations will be used in the rest parts 

of this paper: variables in bold lower case for vectors, bold

capital for matrices, ‘*’ for convolution, E{ } for expectation, 

and the correlation vector formed by a signal sample a(t) and a 

signal vector b(t) is denoted by )()( ttaEa br b
.

3. ADF FORMULATION IN NOISE 

3.1. Vector Formulation of ADF Algorithm

The input-output (I/O) relation of ADF source separation system

for clean (noise-free) speech-mixtures can be put in a vector

form of yGv ~ , with 
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where )(~ tjy , , and are (2N-1) 1 input vector, N 1 output 

vector, and N (2N-1) system matrix, respectively with 

, and I denotes the N N identity matrix.

Specifically,
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The I/O relation of input and output correlation matrices

is , with TGGRR yyvv ~~

2212
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where the off-diagonal and diagonal blocks are 
T

ijijij

T

ji ijjjiijiji
GRGRGGRRR yyyyyyyyvv ~~~~     (2) 

T
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The system output correlation matrix is also related to system

input-output cross-correlation matrix as 

vyyvvyvv R
0G

G0
RGRR ~

)12(21

12)12(
~

NN

NN      (4) 

where .
T

iii Ntytyt )1(,),()(y

Imposing decorrelation conditions on (4) to force the off-

diagonal blocks of to zero, we obtain 
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which is an over-determined system of equations since the

solution of ADF coefficients need 2N constraints only. Instead 

of solving ’s by the block-diagonalization of (4) directly, (as

actually did by minimizing a criterion in [5]) we can derive 

solutions by appropriately selecting a subset of constraints from 

the off-diagonal blocks in (5). Choosing N constraints from the 

1st row and N constraints from the (N+1)-th rows of (5) 

respectively, the equations for ADF system solutions are 

obtained as 
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The least-square solution of Eq. (6) coincides with the least-

cross-correlation of ADF outputs because the error vector of (6) 

actually coincides with , i.e., .
jiv vr ij

T

yv jjjiji
gRrr vyvv

By alternating between the following two cross-correlation 

minimization steps 
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the parameters of ADF separation filters can be searched by the 

gradient descent procedure .

Assuming independence of and , the gradient 

vectors are derived from the 1
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Alternative methods could be used to solve (6) with varying

performances. In fact, the RLS-like algorithm proposed in [1]

can be derived from the alternating solution of (6) with

Newton’s method that uses Hessian matrices implied by (7). 

Under the assumption that the real parts of the eigen-values 

of remain positive [4], the adaptation direction in (7) can be 

simplified to

jjvyR

jivij vrg , whose instantaneous implementation 

coincides with the basic ADF algorithm in [1], derived from the 

zero-searching problem using the method of Robbins-Monro 

stochastic approximation [8].

3.2. Analysis of Noise Effects 

Assume that spatially uncorrelated white additive noises are 

present at the inputs, as shown in Fig.1, and denote the ADF 

output in noise by . The I/O relation 

becomes

nv

)~~( nyGv n
, where is a (4N-

2) 1 noise vector, uncorrelated with speech mixtures, with 
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The noise correlation matrix is 
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where and are power of and , respectively.2

1
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Under input noise, the new I/O relation of correlation 

matrices becomes
T

nn
GRRGR nnyyvv ~~~~                      (9) 

From (8) and (9), the noisy ADF output correlation can be 

determined by the noise-free output correlation , the noise 

power and , and the cross-coupling filters ’s as follows: 

nnvvR

vvR

2

1

2

2 ijg

TTT

TTT

nn

2121

2

1

2

212

2

221

2

1

12

2

221

2

11212

2

2

2

1

GGIG0I0IG

0IGG0IGGI

RR vvvv

The effects of noises on the filtering process of ADF can be 

analyzed from the auto-correlation blocks of by
nn vvR

T

ijijjiiinini
GGIRR vvvv

22 ,               (10) 

which shows that the effects of input noises on ADF outputs 

could be classified into two types: those propagated by direct-

paths and those propagated by cross-channel paths. The direct-

path noise remains to be white with the same power as input, 

while the cross-channel noise is colorized by the de-coupling

filters ’s.
ijg

The adaptation of ADF model parameters cannot reduce 

output noise. However, the influence of background noises on

outputs depends on ADF coefficients. At the system output, 

input noises have the least effects in the trivial cases of 

0ijg where only direct-path noises are present; input noises 

have the strongest effects when ’s are close to the ideal de-
ijg
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coupling filters, under the source mixing condition that the direct

paths are close to the cross-coupling paths [4] such that the 

magnitudes of )( fGij
’s are close to 1. In the latter cases,

output level of noise energy nearly doubles that of the input

noise energy.

The performance of the parameter estimation process of 

ADF is deteriorated by the presence of noise. It is desirable to 

analyze such noise effects on adaptation, and to counter these 

effects for more accurate estimation of cross-coupling filters.

The cross-correlation matrices between noisy output vectors are 
T

ijj

T

jiijinjni
0IGG0IRR vvvv

22       (11) 

where clean is unavailable and only noisy is observable. 

Due to the noise effects shown in the RHS of (11), directly using

the criterion of decorrelation between ADF outputs ( ) for the 

derivation of filter adaptation procedure is unsuitable. 

v
nv

nv

3.3. Noise-Adapted ADF Algorithm

To improve the performance of ADF adaptations, noise effects

need to be excluded from the objective functions for source 

separation. From Eq. (11), it is obvious that the noise-free output 

cross-correlation vectors can be estimated by

ijjjiivv g
njniji
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2
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where . Therefore, we form a noise-adapted

decorrelation criterion function from (12) as follows: 
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3.4. Implementation Considerations 

The computation of gradient directions in (13) requires matrix-

vector multiplications. To reduce complexity, (13) can be 

approximated by omitting the multiplying correlation

matrix . Another simplification comes from the 

observation that because lengths of the cross-channel

acoustic path and the direct acoustic path are usually different. 

The vectors ’s can be further replaced by their 

instantaneous estimates . Therefore, the simplified

instantaneous implementation of the noise-adapted ADF 

algorithm becomes

jj vyR
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where the adaptation gain is normalized by the short-time energy

estimates of inputs as in [6], i.e.,
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where is the adaptation step-size.

4. EXPERIMENTS

4.1. Speech and Acoustic Path Data

The source speech signals were taken from the TIMIT database.

Target and jammer were convolutively mixed using 

impulse responses of acoustic paths measured in real acoustic 

environment (RWCP [7]). The target speech contained 40 

sentences of 4 speakers (faks0, felc0, mdab0, mreb0) and the 

jammer speech were randomly selected TIMIT sentences

excluding those of target speakers. The acoustic paths

corresponded to the two speaker locations of 130

)(1 ts )(2 ts

 o and 50o that 

were approximately 2 meters away from the 15th and 3rd

microphones of a circular microphone array (15 cm in radius), in 

a recording room with the reverberation time of T[60]=0.3sec [7].

The mixed speech data were contaminated by varying levels of 

white Gaussian noises, as illustrated in Fig.1. In all simulations,

filter lengths were set to 400N and adaptation step-size was

chosen to be =0.01. Input noise level was measured with 

respect to the energy of mixture speech in SNRs. The noise

power and in (14) were assumed to be known, where in 

practice they can be measured during speech inactive periods.

2

1

2

2

4.2. Comparison of Convergence Rates 

The performance of the proposed algorithm in adaptive 

estimation of de-coupling filters was evaluated by convergence 

rate, which was measured in terms of normalized ADF filter 

errors at SNR levels of 25dB, 15dB, and 5dB, shown in Fig.2 

(a)-(c). The results show that the noise-adapted ADF algorithm

outperformed baseline ADF algorithm, and as SNR decreased

the convergence rate improvement became more significant. 

4.3. Target-to-Interference Ratio 

Associated with error reduction in adaptive filter estimation, the 

noise-adapted ADF algorithm provided improvement to gains of 

TIR (target-to-interference ratio) over the baseline algorithm. 

Noise energy was not included in the calculation of TIRs to

focus on the performance of speech separation only. The output-

to-input TIR gains from baseline and noise-adapted ADFs under 

different input noise conditions are shown in Table 1. The initial

TIR values at ADF inputs were 0.53dB and -0.55dB, 

respectively.

Table 1.  Comparison of target-to-interference ratios (dB)

Baseline ADF Noise-Modifed ADF 
SNR

TIR Gain v1 TIR Gain v2 TIR Gainv1 TIR Gainv2

0dB 3.72 3.36 7.02 6.89
5dB 5.01 4.58 7.52 7.35

10dB 6.13 5.78 7.76 7.56
15dB 7.00 6.73 7.90 7.71
20dB 7.56 7.34 7.97 7.80
25dB 7.84 7.66 8.00 7.84
30dB 7.96 7.79 8.02 7.86

4.4. Phone Recognition Accuracy

Finally, the effectiveness of the proposed noise-adapted ADF 

algorithm was compared with baseline algorithm on the task of

phone recognition. Speech feature vector contained 13 cepstral 
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coefficients and their first and second-order time derivatives. 

Acoustic model had 39 context-independent phone units, each 

unit modeled by 3 emission states of HMM, and each state had a 

size-8 Gaussian mixture density. Phone bigram was used as 

"language model." Both training and test data were processed by

cepstral mean subtraction.
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(b) 15dB
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(c) 5dB

Figure2. Comparison of Convergence Rates (solid: noise-

adapted ADF; dashed: baseline ADF)

For purpose of reference, phone recognition accuracies 

were first evaluated for various noise corrupted cases, including 

speech mixture (yn1(t)), speech mixture yn1(t) separated by ideal 

de-coupling filters, target source (sn1(t)), and directly passed

target source s1(t)*h11(t)+n(t). The results are shown in Table 2.

Since noisy speech mixtures contained two sources of 

comparable energies, while noisy sources contained only a 

single speech source, the SNR of the latter case was set to be 

3dB lower than that of the former. The accuracies of ideally

separated noisy mixtures (column 3) were lower than those of 

directly passed noisy target source (column 6) in most cases, 

consistent with the analysis of noise effects in Section 3.2.

The performance of blind speech source separation was

next evaluated and the ADF de-coupling filters estimated at 

different levels of input noises were used to separate speech 

mixtures without additive noise. Phone accuracy results obtained 

from noise-adapted ADF algorithms were consistently higher 

than those from baseline algorithm, as shown in Table 3, and the

improvement of the proposed method over the baseline ADF

was significant at low SNRs.

Table 2. Phone accuracy (%) under reference conditions

Mixture yn1(t) Source s1(t)
SNR

yn1(t) Ideally Separated
SNR

sn1(t) s1(t)*h11(t)+n(t)

0dB 10.9 9.9 -3dB 11.3 9.2

5dB 17.0 17.0 2dB 19.7 16.4

10dB 19.4 21.6 7dB 25.3 23.1

15dB 20.6 26.2 12dB 32.8 27.4

20dB 23.9 32.3 17dB 41.0 33.1

25dB 26.3 37.4 22dB 50.4 42.3

30dB 28.4 42.3 27dB 57.9 50.0

clean 30.4 52.0 clean 68.0 59.7

Table 3.  Comparison of phone accuracy (%) on clean speech 

mixtures separated by ADF de-coupling filters obtained from 

baseline and noise-adapted ADF

SNR Baseline (%) Noise-Adapted (%)

0dB 32.9 39.6

5dB 35.8 40.6

10dB 37.3 41.9

15dB 39.3 43.5

20dB 42.3 43.5

25dB 42.4 43.8

30dB 43.5 44.0

5. CONCLUSION

The vector formulation of ADF provides a clear insight into the 

effects of noises on ADF systems and leads to the derivation of a

new noise-adapted ADF algorithm with a simple form. The

proposed algorithm significantly improved the performance of

ADF de-coupling filter estimation, and achieved enhanced 

separation effects for speech sources. Although noise impacts on 

de-coupling filter adaptation were reduced by the new method,

de-noising techniques for ADF outputs need to be explored

based on current noise analysis, which will be a topic of future 

study.
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