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ABSTRACT

The Kalman recursion is a powerful technique for reconstruction
of the speech signal observed in additive background noise. In
contrast to Wiener filtering and spectral subtraction schemes, the
Kalman algorithm can be easily implemented in both causal and
noncausal form. After studying the perceptual differences between
these two implementations we propose a novel algorithm that com-
bines the low complexity and the robustness of the Kalman filter
and the proper noise shaping of the Kalman smoother.

1. INTRODUCTION

The enhancement of noisy speech for mobile communications sys-
tems is a challenging and long-standing research problem. Kalman
filtering is a general estimation technique applicable to the speech
enhancement problem. The use of Kalman filtering for speech en-
hancement was first proposed in [1] and later extended to the more
realistic colored noise case in [2]. A variety of Kalman filter im-
plementations have been proposed for speech enhancement, some
concerned with the speech model [3], some with parameter esti-
mation schemes [4].

The Kalman algorithm in its causal form is the best linear sig-
nal estimator, in the mean-squared error sense, given the past and
the present observations. However, for typical speech processing
applications, future data is available and a noncausal implementa-
tion is possible. The optimal, in the mean-squared error sense, sys-
tem that at each time point exploits all the available past and future
data is the Kalman fixed-interval smoother. Removing the causal-
ity constraints naturally leads to a decrease in the mean-squared
error. However, we do not focus on the error covariance, since it is
known to be poorly correlated with human perception [5]. It is of
practical interest to study the performance of the speech enhance-
ment system in relation to the concept of ”masking”. Masking is
the phenomenon that a weak signal is made inaudible in the vicin-
ity of a strong signal. The valleys in a speech spectrum are the
regions where in general the noise is not masked by the speech
signal and, therefore stronger suppression is needed. We show
that the causality constraint reduces the sharpness of the Kalman
filter transfer function, and that the causality constraint introduces
a degradation of the subjective quality. However, the causal imple-
mentation has low computational complexity and lacks the ”musi-
cal” noise distortion that is typical for the noncausal algorithms.
In this paper we developed a novel speech enhancement algo-
rithm that inherits only the desired features of causal and noncausal
Kalman algorithms.

This work was partially funded by Nokia Corporation.

2. KALMAN RECURSION

Let the speech signal recorded by the microphone be given by:

yk = sk + vk, (1)

where sk is the sampled speech signal, and vk an independent
additive background noise. The Kalman algorithm provides a
method to compute recursively the minimum mean-squared error
estimate ŝk from the available noisy observations.

2.1. The State-Space Model

In order to apply the Kalman filter, we model the speech and noise
as autoregressive processes of model order p and q respectively:

sk =

p∑
j=1

ajsk−j + wk (2)

vk =

q∑
j=1

bjvk−j + uk, (3)

where wk and uk are white noise sequences. The speech and the
noise model orders are typically set to ten for narrowband speech.
The system of equations (1-3) can be represented in a state-space
form:

xk+1 = F xk + G zk (4)

yk = HT xk,

xk = [sk sk−1 . . . sk−p+1 vk vk−1 . . . vk−q+1]
T is the (p + q)

dimensional state vector and zk = [wk uk]T . The explicit expres-
sions for F, G and H are given below:

F =

(
Fs 0p,q

0p,q Fv

)

G =

⎛
⎝ 1 0 · · · 0 0 0 · · · 0

0 0 · · · 0︸ ︷︷ ︸
p

1 0 · · · 0︸ ︷︷ ︸
q

⎞
⎠

T

H =

(
1 0 · · · 0︸ ︷︷ ︸

p

1 0 · · · 0︸ ︷︷ ︸
q

)T

,

and the speech transition matrix is given by:

Fs =

⎛
⎜⎜⎜⎜⎜⎝

a1 a2 · · · ap−1 ap

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ .

The noise transition matrix Fv is of the same form, except that its
elements are the linear predictive coefficients bj .
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2.2. Causal Implementation

Using the state-space representation (4), the Kalman filter estimate
becomes [2], [6]:

x̂k|k = Fx̂k−1|k−1 + Kkek (5)

ek = yk − HT Fx̂k−1|k−1

Kk = Pk|k−1H(HT Pk|k−1H)−1

Pk|k = [I − KkHT ]Pk|k−1

Pk+1|k = FPk|kFT + GQGT

where Kk is the Kalman gain and x̂k|k is the estimate of the state
at a time index k, given observations up to a time index k. The
prediction-error covariance matrix and the filtering-error covari-
ance matrix are given by Pk+1|k and Pk|k, and the noise covari-
ance is given by Q = E{zkzT

k }. The speech sample estimate can
be obtained by ŝk = [1 0 · · · 0]p+q x̂k|k. The filter parameters Fs,
Fv and Q are updated on a frame-by-frame basis.

2.3. Noncausal Implementation

In Kalman filtering, the estimate ŝk is causal and is based on the
noisy measurement set {y0, y1, . . . , yk}. However, most commu-
nication systems permit a delay and the available noisy measure-
ments are {y0, y1, . . . , yk, . . . , yM−1, yM}. Here yM is the last
sample of the currently available speech frame. For off-line pro-
cessing of speech, yM can also be the last sample in the entire
utterance.

The Kalman fixed-interval smoother is a well studied al-
gorithm that can incorporate all the available future data.
For the state-space model (4), for all l in the interval
0 ≤ l ≤ M , we can determine the estimate x̂l|M given
{y0, y1, . . . , yk, . . . , yM−1, yM} and the associated error covari-
ance is Pl|M = E{(xl − x̂l|M )(xl − x̂l|M )T }. Using the inno-
vations approach, the smoothed estimators can be obtained easily
with the Bryson-Frazier recursion [6]. On a forward pass, over
the interval [0, M ], we collect the quantities x̂k|k, ek, Pk|k−1,
Fp,k = F − FKkHT and Re,k = HT Pk|k−1H, according to the
iteration (5). Then the adjoint variables λk|M are computed via the
backward recursion:

λk|M = FT
p,kλk+1|M + HR−1

e,kek, (6)

with an initial value λM+1|M = 0. Finally the smoothed state
estimates are obtained as a weighted sum of filtered state estimates
and adjoint variables:

x̂k|M = x̂k|k + Pk+1|kFT
p,kλk+1|M . (7)

The index M can be large, and the implementation of
the Kalman fixed-interval smoother not feasible, because of
high computational and storage demands. It is reasonable to
study algorithms that incorporate only a ”sufficient” amount of
future data. The Kalman fixed-lag smoother determines for
each time instant k and some fixed-lag N ≤ M , recursive
equations for the state estimate x̂k|k+N given the observations
{y0, y1, . . . , yk, . . . , yk+N−1, yk+N}. The implementation of the
fixed-lag smoother, used later in the simulation is also based on
Bryson-Frazier formulas [6].

In the following sections, ”delay” and ”causality” will be re-
lated only to the type of Kalman algorithm implementation. Pa-
rameter estimation schemes, as well as pre- and post- processing
algorithms are assumed to be completely separate from the filter
implementation, and their delay is not discussed.

3. CAUSALITY AND PERCEIVED QUALITY

The differences between the discussed causal and noncausal im-
plementations, in the mean-squared error sense, are well studied
[6]. Unfortunately the mean-squared error is poorly correlated
with the human perception of quality. Noise masking [7] is a well-
known psychoacoustical property of the auditory system that has
been applied successfully to speech coding [5] and enhancement
[8]. Therefore it will be of interest to present the causal and non-
causal algorithms in a form where we can easily see the differences
from a noise-masking perspective.

3.1. Frequency Domain Representation

Let us assume a stationary signal, available at the infinite past and
that the variables {Re,k, Kk, Fp,k} have reached their steady-state
values {Re, K, Fp}. After rearranging and taking the z-transform
of the first equation in (5) we obtain:

x̂KF (z) = (I − z−1F)−1K e(z). (8)

Thus, the transfer function from the innovations to the state esti-
mate is:

Hc(z) = (I − z−1F)−1K. (9)

Using equation (6) in a similar manner we find the transfer func-
tion from the innovations to the adjoint variable to be (I −
zFT

p )−1HR−1
e . It is then easy to see from equation (7) that the

transfer function from innovations to the smoothed state estimate
can be expressed as Hc(z) + Ha(z), where:

Ha(z) = PFT
p (I − zFT

p )−1HR−1
e . (10)

From the first two equations in (5), we see that e(z) =
L−1(z)y(z), with the whitening filter:

L−1(z) = I − HT (I − z−1FpHT )−1FK. (11)

We finally obtain the transfer function of the Kalman filter and
Kalman fixed-interval smoother in the desired form:

HKF (z) = Hc(z)L−1(z) (12)

HKS(z) = [Hc(z) + Ha(z)]L−1(z).

The Kalman smoother transfer function consists of a strictly causal
term Hc(z) =

∑∞
j=1

z−jFj−1K and a strictly anticausal term

Ha(z) =
∑∞

j=1
zjP(FT

p )jHR−1
e . In the Kalman filter transfer

function, the polynomial consists only of negative powers of z,
since the anticausal term is truncated. As a result, the Kalman fil-
ter transfer function is not sufficiently sharp to model the speech
spectral valleys, which are regions with lower contribution to the
mean-squared error. The Kalman filter and the Kalman smoother
match the spectral peaks essentially equally well and the differ-
ence is over the spectral valleys, where the Kalman filter leaves a
significant amount of unmasked residual noise.

3.2. First-Order Model

To support the argumentation so far, we study a simple model with
known analytical solution. We assume a stationary, infinitely long
data segment and a first-order autoregressive model for the speech
signal. Equation (2) then simplifies to:

sk = ask−1 + wk. (13)

Suppose the signal is contaminated with stationary white Gaussian
noise with known variance, according to equation (1), and we seek
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the optimal mean-squared error linear estimate, in the causal and
noncausal form.

Substituting the second equation into the first equation of the
recursion (5) we obtain the general relation:

ŝKF (z) = (I − z−1(F − KHT F))−1K y(z), (14)

and the transfer function of the steady-state Kalman filter for the
given first-order model is:

HKF (z) =
K

1 − a(1 − K)z−1
. (15)

Here the Kalman gain is:

K =
P̄

P̄ + σ2
v

, (16)

where P̄ is the positive solution to the equation:

P 2 + [(1 − a2)σ2
v − σ2

w]P − σ2
vσ2

w = 0. (17)

The most straightforward manner to find a noncausal solution to
the problem is by realizing that the transfer function of the op-
timal Kalman fixed-interval smoother, under the discussed above
conditions, coincides with the well known noncausal Wiener filter
solution:

HKS(z) =
Ps(z)

Py(z)
=

σ2
w

σ2
w + σ2

v(1 − az)(1 − az−1)
. (18)

Here Ps(z) is the power spectrum of the clean speech signal and
Py(z) is the power spectrum of the noisy observations. In Fig. 1

Hz

dB

Original
Noisy

Hz

dB

Kalman Smoother
Kalman Filter

Fig. 1. Clean and noisy power spectrum for a first order signal and
transfer functions of the Kalman fixed-interval smoother and the
Kalman filter.

we illustrate the power spectrum of the clean and the noisy signals
with the parameters a = 0.8, σ2

w = 0.36 and σ2
v = 1.0. In

the same figure we present the frequency response of the transfer
functions (18) and (15). Only in a case of an input signal with flat
spectrum, i.e., a = 0, the causal and noncausal transfer functions

are equivalent: HKF (z) = HKS(z) =
σ2

w

σ2
w

+σ2
v

. In all other cases
the Kalman fixed-interval smoother suppresses more noise than the
Kalman filter for the high frequencies, where the signal energy is
lower. By means of simulations we confirmed that this behavior
generalizes to higher-order autoregressive models for speech.

4. IMPROVED KALMAN FILTERING BY
PERCEPTUAL WEIGHTING

The conventional way to overcome the drawbacks of Kalman fil-
tering is to remove the causality constraints and use a smoother
instead. Even though theoretically optimal, this solution has some
practical disadvantages, such as high computational complexity
and ”musical” noise distortion. Therefore we pose the problem
of improving the perceptual performance of the Kalman filtering,

while preserving its efficient causal structure. Since the Kalman
filter is the optimal mean-squared error algorithm, further reduc-
tion of the error is not possible. However through proper weighting
of the error covariance we can redistribute the error towards high
energy speech regions, where it is less audible.

The idea of perceptual weighting of the error is extensively
exploited in the speech coding [5]. The weighting filter that deem-
phasizes the formant structure of the speech signal is of the form:

H(z) =
A(z/γ1)

A(z/γ2)
, (19)

where A(z) is the short term predictor filter and 1 ≥ γ1 ≥ γ2.
The general scheme of the perceptual transformation can be

seen in Fig. 2. The input to the Kalman filter is a signal with deem-
phasized formant structure and the inverse transform is applied to
the processed signal. All the model parameters are estimated in a
perceptual domain. The increased suppression of noise in the low

yk

H(z)
y′

k

KF
ŝ′k

H−1(z)
ŝk

Fig. 2. Perceptual transformation for Kalman filtering by means
of formant pre- and post- filter.

energy speech regions is clearly demonstrated in Fig. 3, where the
autoregressive envelopes of original and processed signals for a
representative speech frame are plotted. The proposed perceptual
modification of the Kalman filter will not be optimal in the mean-
squared error sense, but improvements in the perceived quality are
confirmed in the next section by listening tests and objective mea-
sures that are well correlated with human perception.

Hz

dB

Original
Noisy
Conventional Kalman Filter
Weighted Kalman Filter

Fig. 3. Autoregressive envelopes of the standard and the proposed
Kalman filter, with γ1 = 1.0 and γ2 = 0.6.

5. SIMULATIONS

In this section we perform simulations of the presented systems,
with both ”ideal” and estimated filter parameters. The test mate-
rial consists of four clean speech sentences (two male and two fe-
male speakers), arbitrarily chosen from the TIMIT speech database
[9]. The iterative scheme proposed in [2] was used to estimate
the system parameters, for the cases where they were not known.
The objective evaluation was performed in terms of the measures:
SNR, spectral distortion (SD) [5], and PESQ [10]. The listening
test setup was similar to the ITU recommendation ITU-R BS.1534
MUSHRA [11]. Ten listeners, not familiar with the systems, were
asked to rate the systems on a scale from 0 to 100.
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5.1. Optimal Delay for the Kalman Fixed-Lag Smoother

The noisy signal was processed with the Kalman filter, the Kalman
fixed-interval smoother, and the fixed-lag smoother, with increas-
ing lag. The required model parameters were estimated from the
current frame of 20 ms, directly from the clean and noise signals.

0 2 4 6 8 10

2

2.4

2.8

3.2

3.6

Lag(samples)

S
D

(d
B

)

Fixed Lag at 6.2 dB
Fixed Interval at 6.2 dB
Fixed Lag at 4.0 dB
Fixed Interval at 4.0 dB

Fig. 4. Performance comparison in SD with white noise at input
SD 6.2 dB and 4.0 dB.

The horizontal lines in Fig. 4 correspond to the optimal
Kalman fixed-interval smoother with delay until the end of the
speech signal. It is easy to see the significant difference between
the performance of the Kalman filter with zero delay and the fixed-
lag smoother. The simulations with SNR and PESQ exhibited sim-
ilar behavior. From informal listening tests we conclude that per-
ceptual equivalence between the fixed-interval smoother and the
fixed-lag smoother is reached at lag N = 10, at 8 kHz sampling
rate, despite of the faster convergence of the objective measures.
A large difference between the causal and the delayed system is
a strong indication that optimizing mean-squared error, under the
causality constraints, results in an error distribution inconsistent
with human perception.

5.2. Performance Comparison

The same test material and ”ideal” conditions were used to eval-
uate the objective performance of the proposed weighted Kalman
filter, Table 1. The weighting filter (19) was used with parame-
ters γ1 = 1.0 and γ2 = 0.6. The fixed-lag smoother was used
with lag N = 10. As expected, the SNR values are lower for the

SNR SD PESQ
Kalman filter 14.8 2.6 2.924
Weighted Kalman filter 9.2 1.9 3.584
Fixed-lag smoother 16.8 2.2 3.750

Table 1. Performance comparison with ideal parameters [traffic
noise at input SNR 10 dB].

proposed implementation of the Kalman filter, since it minimizes
mean-squared error in a transformed domain. In contrast, the SD
and PESQ values, which are well correlated with human percep-
tion, were better for the proposed modification in Kalman filter.

The results from the listening tests, summarized in Table 2,
show a clear advantage of the smoother over the causal implemen-
tations, for the case of known filter parameters. When the speech
and noise model parameters were unknown, the weighted Kalman
filter was ranked higher than the Kalman smoother and the con-
ventional Kalman filter.

Noise Type System type Score
Traffic 5 dB Kalman Filter 24.1
(Ideal) Weighted Kalman Filter 25.4

Fixed-Lag (N=10) Smoother 35.9
Traffic 5 dB Kalman Filter 19.2
(Estimated) Weighted Kalman Filter 22.5

Fixed-Lag (N=10) Smoother 18.8

Table 2. Listeners’ mean subjective scores for the proposed sys-
tems against the baseline Kalman filter and Kalman-fixed lag
smoother. The 95% confidence interval does not exceed 2.4.

6. CONCLUSIONS

By means of theoretical analysis and simulations we showed that
the Kalman smoother is more consistent with human perception
than the Kalman filter, and found the minimum lag that guarantees
the optimal performance for the Kalman fixed-lag smoother. De-
spite its disadvantages, the causal implementation has lower com-
putational complexity and is more robust to errors in parameter
estimation. The proposed weighted Kalman filter combines the
proper noise shaping of the smoother and the robustness and low
complexity of the causal implementation.
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