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ABSTRACT
A monaural noise suppression algorithm is proposed based
on filtering the spectro-temporal modulations of noisy speech.
The modulations are estimated from a multiscale represen-
tation of the signal spectrogram generated by a model of
sound processing in the auditory system. A significant ad-
vantage of this method is its ability to suppress noise that
has distinctive modulation patterns, despite being spectrally
overlapping with the speech. The performance of the algo-
rithm is evaluated using subjective and objective tests and
compared to the Optimal Smoothing and Minimum Statis-
tics approach (R. Martin 2001). The results demonstrate
the efficacy of the spectro-temporal filtering approach in the
conditions examined.

1. INTRODUCTION

Noise suppression to enhance speech quality or intelligibil-
ity is necessary in a wide range of applications including
mobile communication, hearing aids and speech recogni-
tion. It has been an active research area for over fifty years,
mostly framed as a statistical estimation problem in which
the goal is to estimate speech from its sum with other in-
dependent processes (noise). This approach requires an un-
derlying statistical model of the speech and noise, as well
as an optimization criterion. In some of the earliest work,
the speech waveform itself was estimated (summarized in
[1]). When the distortion is expressed as a minimum mean
square error, the problem reduces to the design of an opti-
mum Wiener filter.

Estimation can also be done in the frequency domain, as
is the case with such methods as spectral subtraction [1] and
its derivatives such as the signal subspace approach [2] and
the estimation of the short-term spectral magnitude [3]. Es-
timation in the frequency domain is superior to the time do-
main as it offers better initial separation of the speech from
noise, which (1) results in easier implementation of opti-
mal/heuristic approaches, (2) simplifies the statistical mod-
els because of the decorrelation of the spectral components,
(3) facilitates integration of psychoacoustic models [4].

Recent psychoacoustic and physiological findings in mam-
malian auditory systems, however, suggest that the spec-
tral decomposition is only the first stage of several interest-
ing transformations in the representation of sound. Specif-
ically, it is thought that neurons in the auditory cortex de-
compose the spectrogram further into its spectro-temporal
modulation content [5]. This finding has inspired a multi-
scale model representation of speech modulations that has
proven useful in assessment of speech intelligibility [9], dis-
criminating speech from non-speech signals [13], and in ac-
counting for a variety of psychoacoustic phenomena [10].

The focus of this article is an application of this model to
the problem of speech enhancement. The rationale for this
approach is the finding that modulations of noise and speech
have a very different character, and hence they are well sep-
arated in this multiscale representation, more so than is nor-
mally the case at the level of the spectrogram. Modulation
frequencies have been used in noise suppression before (e.g.
[8]), however this study is different in several ways: (1) the
proposed method is based on filtering not only the temporal
modulations, but the joint spectro-temporal modulations of
speech (2) Modulations are not used to obtain the weights of
frequency channels, but the filtering itself is done in spectro-
temporal modulation domain, and (3) the filtering is done
only on slow temporal modulations of speech (below 32Hz)
which are important for intelligibility.

A key computational component of this approach is an
invertible auditory model which captures the essential audi-
tory transformations from the early stages up to the cortex,
and provides an algorithm for inverting the ”filtered repre-
sentation” back to an acoustic signal. Details of this model
are available elsewhere, and hence only a brief summary is
provided next.

2. AUDITORY MODEL

The auditory model was inspired by psychoacoustical and
neurophysiological findings in the early and central stages
of the auditory pathway. The early stage converts the sound
waveform into an auditory spectrogram - roughly akin to a
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Fig. 1. Demonstration of the cortical processing stage of the
auditory model. The auditory spectrogram (left) is decom-
posed into its spectro-temporal components using a bank of
spectro-temporally selective filters. The impulse responses
(spectro-temporal receptive fields or STRF) of two such fil-
ters are shown in the center panels. The upper filter is tuned
to 4Hz temporal (rate) and 2 cycle/octave spectral (scale)
modulation whereas the bottom one is tuned to faster rate
(8Hz) and finer scale (8 cycle/octave). The multiresolution
(cortical) representation is computed by (2-dimensional)
convolution of the spectrogram with each STRF, generat-
ing a family of spectrograms with different spectral and
temporal resolutions, i.e., the cortical representation is a 4-
dimensional function of time, frequency, rate and scale. A
complete set of STRFs guarantees an invertible map which
is needed to reconstruct a spectrogram back from a modified
cortical representation.

time-frequency distribution along a tonotopic (logarithmic
frequency) axis [6]. The second (cortical) stage performs a
two dimensional wavelet transform of the auditory spectro-
gram, thus providing an estimate of its spectral and temporal
modulation content. It is computationally implemented by a
bank of two-dimensional (spectro-temporal) filters that are
selective to different spectro-temporal modulation parame-
ters ranging from slow to fast rates temporally, and from
narrow to broad scales spectrally. The spectro-temporal
impulse responses (or ”receptive fields”) of these filters are
centered at different frequencies along the tonotopic axis.
Therefore, the basic mathematical formulation of the model
can be summarized as followed:

ycochlea(t, f) = s(t) ∗ hcochlea(t, f) (1)

yan(t, f) = gcochlea(∂tycochlea(t, f)) ∗ µhaircell (2)

y(t, f) = max(∂fyan(t, f), 0) ∗ µmidbrain (3)

r(t, f ;ω, Ω, θ, φ) = (4)

y(t, f) ∗tf [hrate(t;ω, θ).hscale(f ; Ω, φ)]

Fig. 2. Rate-Scale representation of clean speech. Spectro-
temporal modulations of speech are estimated by a bank of
modulation selective filters, and are depicted at a particular
time instant and frequency (tc and fc) by the 2-dimensional
distribution on the right.

where, ycochlea(t, f) is the cochlear filter output, yan(t, f)
is auditory nerve patterns, y(t, f) is the auditory spectro-
gram and r(t, f ;ω, Ω, θ, φ) is the rate-scale representation.

Since the cortical stage (Equation (4)) is linear and in-
vertible, we can readily reconstruct the auditory spectro-
gram y(t, f) from its modified rate-scale representation,
r(t, f ;ω, Ω, θ, φ). The reconstruction of an audio waveform
from the auditory spectrogram is more difficult to derive di-
rectly because of the two nonlinear functions, gcochlea and
max(., 0). Instead, an iterative method is used based on a
convex projection algorithm proposed in [7]. The central
stage processing is illustrated with an example in Figure 1.

2.1. Multiresolution representation of speech and noise

The multiresolution energy representation of sound is a 4-
dimensional function of time (t), frequency (f ), rate (ω)
and scale (Ω). One can think of each point in the spectro-
gram as having a 2-dimensional rate-scale representation,
r(tc, fc, ω,Ω) which indicates the modulation strength at all
ω’s and Ω’s for that channel and instant. Figure 2 illustrates
the spectro-temporal modulation energy of clean speech at
time tc and frequency fc. Temporal modulations in speech
tend to concentrate near 4Hz, while spectral modulations
span a wide range reflecting at its high end the harmonic
structure due to voicing (2-6 cycle/octave) and at its low end
the spectral envelope or formants (less than 2 cycle/octave).
Figure 3 illustrates the different modulations due to noise
and speech in this representation. The speech signal has
been corrupted by additive Buccaneer One noise from Noi-
sex [11] database. The resulting rate-scale modulation at the
same point as before (tc and fc) is shown in the top-center
panel. In the bottom-center panel the modulations due to
the noise-only signal are shown. Unlike speech, this noise
has a strong temporally modulated energy ( at a rate of 10
Hz) near fc which overlaps with a more stationary speech
spectrum. Noise and speech also differ substantially in their
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Fig. 3. Filtering the rate-scale representation: Modula-
tions due to the noise are filtered out by weighting the
rate-scale representation of noisy speech with the function,
H(t, f, ω,Ω). In this example, the Buccaneer One noise
from Noisex was added to clean speech at SNR 10dB. The
rate-scale representation of the signal, rs(tc, fc, ω,Ω) and
the rate-scale representation of noise, rn(tc, fc, ω,Ω) were
used to obtain the necessary weighting as a function of ω
and Ω (equation 5). This weighting was applied to the rate-
scale representation of the signal, rs(tc, fc, ω,Ω) to restore
modulations typical of clean speech. The restored modula-
tion coefficients were then used to reconstruct the cleaned
auditory spectrogram, and from it the corresponding audio
signal.

spectral modulation content because the noise at fc is very
narrow and hence spreads its energy up to relatively high
scales (6 − 8 cycles/octave). (Figures 2 3).

2.2. Estimation of noise modulations

A crucial factor in affecting the performance of any noise
suppression technique is the quality of the background noise
estimation. In spectral subtraction algorithms, several tech-
niques have been proposed that are based on three assump-
tions: (1) speech and noise are statistically independent, (2)
speech is not always present and (3) the noise is more sta-
tionary than speech [4]. These methods include Voice Ac-
tivity Detection (VAD), soft-decision method, and tracking
of spectral minima [4]. We implemented two methods to
perform this estimation: a VAD and an adaptive procedure.
One of the common problems with VADs is their poor per-
formance at low SNRs. To overcome this limitation, we
employed a recently formulated speech detector (also based
on the cortical representation) which detected speech reli-
ably at SNR’s as low as -5dB [13]. An alternate approach to
VAD is to use an adaptive model to track and emphasize the
salient modulations of speech and suppress irrelevant ones.
The average spectro-temporal modulations of clean speech
have proven to be a distinctive property that can be reliably
used to detect speech and assess its intelligibility [13, 9].

In the remainder of this paper, we will focus on a modi-

Fig. 4. Examples of restored spectrograms after ”filtering”
of spectro-temporal modulations. (A) (Top) Buccaneer One
from Noisex and SI1347 (male) speech from TIMIT [12]
added at SNR 15dB (left panel). (Right panel) The clean
speech spectrum has been successfully restored although
the noise has a strong temporally modulated tone (10 Hz)
mixed in completely with the speech signal near 2 kHz (in-
dicated by the arrow). (B) (Bottom panels) Destroyer En-
gine Room noise from Noisex and SI948 (female) speech
from TIMIT added at SNR 15dB (Left panel). (Right panel)
Speech spectrum has been restored even at frequencies (ar-
rows) where the noise introduced significant modulations
that have a totally different modulation character from the
clean speech.

fied VAD approach using [13] in which the spectro-temporal
modulations of noise are estimated from a 500ms noise-only
frame.

3. NOISE SUPPRESSION

The exact rule for suppressing noise coefficients is a deter-
mining factor in the subjective quality of the reconstructed
enhanced speech, specially with regards to the reduction of
musical noise [4]. Many techniques can be used to estimate
the clean speech or noise coefficients, including linear ap-
proaches like Wiener Filter, as well as nonlinear methods.
For this study, a generalized Wiener Filter was used as fol-
lowed:

H(t, f, ω,Ω) = (
SNR(t, f, ω,Ω)

α + SNR(t, f, ω,Ω)
)β (5)

The above equation gives a gain factor for every fre-
quency, rate and scale at each time instant (Figure 3) which
then used to weight the spectro-temporal representation of
noisy speech.
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Noise type, SNR Degraded OSMS[4] STMF
White, +15dB 1.6 2.5 3.3

Buccaneer, +15dB 1.1 2.4 3.2
Destroyer, +15dB 1.6 2.7 2.8

White, +5dB 1.0 2.0 2.3
Buccaneer, +5dB 0.7 2.0 1.9
Destroyer, +5dB 1.0 2.1 1.9

Table 1. Mean Opinion Score on a scale of 1 to 5 av-
eraged over 10 subjects for three conditions: (1) Original
noisy speech (2) enhanced speech using OSMS [4] and (3)
Spectro-Temporal Modulation Filtering (STMF).

Noise type, SNR Degraded OSMS [4] STMF
White, +15dB 2.696 2.857 2.962

Buccaneer, +15dB 2.625 2.670 2.725
Destroyer, +15dB 2.684 2.848 3.023

White, +5dB 1.972 2.477 2.523
Buccaneer, +5dB 2.020 2.279 2.288
Destroyer, +5dB 1.985 2.258 2.349

Table 2. Objective PESQ scores [14] transformed to a
scale of 1 to 5 for three different conditions: (1) Original
noisy speech (2) enhanced speech using OSMS [4] and (3)
Spectro-Temporal Modulation Filtering (STMF).

4. RESULTS FROM EXPERIMENTAL
EVALUATIONS

Noisy speech data were generated by adding three differ-
ent kinds of noise from Noisex [11] to eight clean speech
samples from TIMIT [12]. The noise signals were: White
Noise, Buccaneer Noise One and Destroyer Engine. The
test material was prepared at two SNR ranges, +5 and +15
dB. The performance of the proposed algorithm was evalu-
ated and compared against another system based on Optimal
Smoothing and Minimum Statistics (OSMS) [4]. Test con-
ducted included subjective quality evaluation using mean
opinion score (MOS) test and objective Perceptual Evalu-
ation of Speech Quality (PESQ)[14]. Table 1 shows the av-
erage MOS results of ten subjects for three conditions: de-
graded speech, enhanced using OSMS and Spectro-Temporal
Modulation Filtering (STMF). The results are reported sep-
arately for different SNR and noise type. Considering the
limited number of subjects used, the results show a compa-
rable performance of the two methods. Table 2 shows the
result of objective PESQ [14] test for these two approaches.
In this case, STMF shows a small improvement over OSMS
method.
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