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ABSTRACT

Separating speech from acoustic interference is a very
challenging task. In particular, no system successfully addresses
the separation of unvoiced speech. Fricatives and affricates are
two main categories of consonants that contain a significant
amount of unvoiced signal. We propose a novel system that
separates fricatives and affricates from non-speech interference.
The system first decomposes the input mixture into segments,
each of which contains signal mainly from one source. Then it
detects segments dominated by unvoiced portions of fricatives
and affricates with a feature-based Bayesian classifier, and
groups these segments with voiced speech separated by a
previous system. The proposed system is evaluated with various
types of interference and produces promising results.

1. INTRODUCTION

Various sounds in the daily environment interfere with target
speech. Separating speech from interference is required in many
applications, such as robust speech recognition and hearing aids
design, which has proved to be challenging. This task is more
difficult in the monaural (one microphone) situation. However, a
monaural solution is often necessary or desirable in practice.

Natural speech contains both voiced and unvoiced portions.
Compared with voiced speech, unvoiced speech is severely
weaker and more vulnerable to interfering sounds. In addition,
unvoiced speech lacks harmonic structure, which is an effective
cue for voiced speech separation. As a result, separating
unvoiced speech is significantly more challenging. Currently no
system is effective for unvoiced speech separation in the
monaural situation. Speech enhancement techniques, such as
spectral subtraction [9] and the subspace method [5], can deal
with unvoiced speech only when prior information for
interference is available, or interference satisfies specific
statistical properties. Hence their applications are limited.

On the other hand, human listeners show impressive
abilities in separating target speech in various environments,
through a process referred to as auditory scene analysis (ASA)
[3]. ASA generally takes place in two stages: segmentation and
grouping. In segmentation, the acoustic mixture is decomposed

into a collection of segments. Each segment occupies a
contiguous time-frequency (T-F) region, containing signal
mainly from one source. In grouping, the segments originated
from the same source are grouped together. Psychophysical
research on ASA has motivated computational systems of speech
separation based on ASA principles, with success in separating
voiced speech [4] [8]. However, these systems generally utilize
harmonicity as the major ASA cue, and cannot deal with
unvoiced speech.

To separate unvoiced speech, ASA cues other than
harmonicity need to be employed. Therefore, we propose to
separate unvoiced speech based on event onset analysis and
acoustic-phonetic property of speech, which play important roles
in speech perception [3]. Unvoiced speech mainly comes from
three categories of phonemes: fricatives, affricates, and stops.
Separating stop consonant has been addressed previously [6].
Considering the similarity between fricatives and affricates, we
propose a system to separate fricatives and affricates together. In
this paper, we will focus on situations where target speech is
corrupted by non-speech intrusions.

Our system follows the two stages of ASA: segmentation
and grouping. In segmentation, a previous system for auditory
segmentation is applied [7], which forms segments for both
voiced and unvoiced speech based on onset and offset analysis
of auditory events. The next step is to detect segments dominated
by unvoiced portions of fricatives and affricates, and group them
with corresponding voiced portions. For non-speech intrusions,
we may treat grouping as a classification task, i.e., to classify
segments as dominated by fricatives, affricates, or other signal.
Since each segment shall mainly originate from one source,
segments dominated by fricatives and affricates are likely to
have similar acoustic-phonetic characters as those from clean
speech, while segments dominated by interference are likely to
have different characters. Therefore, the system groups segments
according to their acoustic-phonetic features. More specifically,
it distinguishes segments dominated by fricatives, affricates, or
interference through a Bayesian classifier based on segment
spectrum and segment duration.

This paper is organized as follows. Sect. 2 discusses the
computational goal for the proposed system. Sect. 3 and 4
describe details of segmentation and grouping. Sect. 5 presents
evaluation results. A brief discussion is given in Sect. 6.

I - 11010-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



2. COMPUTATIONAL GOAL

An input mixture is first normalized at 60 dB SPL. It then passes
through a 128-channel gammatone filterbank [11], with
frequencies centered from 50 Hz to 8 kHz. The input is further
divided into 20-ms frames with 10-ms overlapping between
consecutive frames. The T-F area in a certain channel within a
certain frame is referred to as a T-F unit.

With the above signal decomposition, the computational
goal of our system is to retain T-F units where target speech is
more intense than interference and cancel other units. In other
words, the goal is to identify a binary mask, referred to as the
ideal binary mask, where 1 indicates that target is stronger than
interference in the corresponding T-F unit and 0 otherwise.
Target speech can then be resynthesized with the mask by
retaining the acoustic energy from T-F regions corresponding to
1’s and rejecting other energy (see [4] for more details). This
computational goal is supported by the masking phenomenon of
the auditory system [10] and researches on automatic speech
recognition with the missing data technique [2]. For more
detailed justification, see [8].

As an example, Fig. 1(c) and 1(d) show a mixture of a
female utterance and crowd noise with music. Fig 1(e) shows the
ideal binary mask. The speech resynthesized from the ideal
binary mask is shown in Fig. 1(f), which is very close to the
clean utterance shown in Fig. 1(b).

Some fricatives and affricates contain both voiced and
unvoiced signal. The T-F regions dominated by their voiced
portions are estimated with the Hu-Wang model [8] with pitch
information obtained from clean speech. The output of the Hu-
Wang model comprises two streams: target stream and
interfering stream, corresponding to voiced speech and periodic
components of interference respectively. Generally, unvoiced
speech and non-periodic interference are not included in either
stream. The proposed system is focused on determining T-F
regions dominated by the unvoiced portions of fricatives and
affricates.

3. SEGMENTATION

In this stage, we apply a previous system for segmentation based

on analysis of event onset and offset [7]. The onsets and offsets
generally correspond to sudden intensity increases and
decreases. The input to the system is the average intensity of
each gammatone filter output at every 1.25-ms window. It is
smoothed to reduce the intensity fluctuations that do not
correspond to actual onsets and offsets through a diffusion
process [12]. The output of the diffusion process at a particular
diffusion time, referred to as the scale, yields intensity smoothed
to a particular degree. The larger the scale is, the smoother the
output intensity is.

At a certain scale, onsets and offsets are detected as the
peaks and valleys of the derivative of the smoothed intensity.
Then the system combines common onsets and offsets into onset
and offset fronts, and matches individual onset and offset fronts.
The T-F region between an onset front and the matching offset
front yields a segment.

Finally, the system undertakes a multi-scale integration of
segmentation. It first forms segments at a larger scale. Then, at a
smaller scale, it locates more accurate onset and offset positions
for these segments, and adding new segments formed at the
current scale. Then the system goes to an even smaller scale.

As an example, Fig. 2 shows the bounding contours of
obtained segments for the mixture of speech and crowd noise
with music. Compared with Fig. 1(e), the formed segments cover
most speech dominant regions, including those dominated by
fricatives and affricates. Some segments for the intrusion are
also formed. For more details of this stage, see [7] .

4. SEGMENT GROUPING

The task for this stage is to detect segments dominated by the
unvoiced portions of fricatives and affricates, and group them
with target stream obtained with the Hu-Wang model [8] (see
Sect. 2). It is executed in two steps: segment reduction and
segment categorization. In segment reduction, the system
removes all the segments with significant energy within time
frames that could not contain fricatives and affricates. More
specifically, the system first uses target stream to find time
intervals containing voiced phonemes other than fricatives and
affricates and then removes segments with significant energy
within these intervals. As a result, the majority of segments
dominated by signal other than fricatives and affricates are
removed. This helps to increase the robustness of the system and
greatly reduces the computation burden for segmentation
categorization. In segment categorization, the system classifies
the remaining segments as dominated by fricatives, affricates, or
interference.

Each step of grouping involves a classification task. In
segmentation reduction, the task is to label each frame within
target stream as containing a fricative, an affricate, or any other
phoneme. In segment categorization, the task is to distinguish
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Figure 1. (a) Energy distribution across T-F units and (b)
waveform of a female utterance, “That noise problem grows
more annoying each day.” (c) Energy distribution across T-F
units and (d) waveform of the utterance mixed with crowd noise
with music at 0 dB. (e) The ideal binary mask of the mixture. (f)
The speech resynthesized from the ideal binary mask.

0 0.5 1.0 1.5 2.0 2.5
50

363

1246

3255

8000

F
re

qu
en

cy
 (

H
z)

Time (Sec)

Figure 2. The bounding contours of obtained segments for
the mixture of speech and crowd noise with music.
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segments dominated by fricatives and affricates from those
dominated by interference. For both classification tasks, the key
is to choose distinctive features that characterize fricatives and
affricates. Previous research suggests the following features to
characterize the unvoiced portions of fricatives and affricates:
spectrum, which includes the spectrum shape and spectrum
intensity, duration, and transition (see[1] for example). The
formant transition from a fricative or an affricate to the
neighboring voiced phoneme is very difficult to obtain, and it is
closely related to the spectrum. Therefore, we will use the first
two features for classification.

Let H0 be the hypothesis that a T-F region is dominated by
interference, H1,k a T-F region dominated by a fricative or an
affricate, indicated by k, and H2,l a T-F region dominated by
other phoneme, indicated by l. Let X(m) be the power spectrum
for the input at frame m, which is obtained by an average of 64-
point FFT over frame m, and XT(m) the corresponding power
spectrum within the target stream. Frame m is labeled as non-
fricative and non-affricate if

))(|(max))(|(max ,2,1 mXHPmXHP Tl
l

Tk
k

< (1)

By applying the Bayesian rule, we have
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Note that since the system labels individual frames, duration
information is not used for this classification.

For a segment s, let ES be the total energy included in the
time frames labeled as non-fricative and non-affricate. If ES is
larger than 50% of the total energy of segment s, or it is larger
than the average energy of fricatives and affricates in the training
data, segment s is removed.

For a retained segment s, which lasts from frame m1 to m2,
let XS(m) be the power spectrum within s at frame m, and XS =
(XS(m1), XS(m1+1), …, XS(m2)). Similar to (2), s is classified as
dominated by a fricative or an affricate if:
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Because segments have varied sizes, the complexity for
computing p(XS|H1,k) and p(XS|H0) directly is extremely high.
Fortunately, by considering only the dependence between two
consecutive frames, we already have a good estimation of
p(XS|H0). That is,
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and the same for p(XS|H1,k). Then (4) becomes
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In addition, a Gaussian mixture model (GMM) is used for
p(X(m)|H0), p(X(m)|H1,k), and p(X(m)|H2,l) so that p(XS(m)|H0),

p(XS(m)|H1,k), and p(XT(m)|H2,l) can be calculated directly from
the corresponding marginal distributions.

In (5), segment duration information is implicitly utilized.
To emphasis the contribution of duration in classification, we
add duration as an auxiliary feature into (5) as follows:
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so that the contribution from spectrum and that from duration are
well balanced. Here dS is the duration of segment s.

The prior distributions and probabilities required for
calculating (2) and (6) are obtained from training. The speech
samples are from the training part of the TIMIT database. For
interference, we collected 100 environmental intrusions,
including crowd noise, traffic noise, and wind, etc. 90 of them
are used for training, and the remaining 10 are used for
evaluation. A GMM with 8 mixtures and a full covariance matrix
for each mixture is used for p(X(m), d|H0), p(X(m), d|H1,k), and
p(X(m)|H2,l).

One problem of the above approach for segment
categorization is the potential mismatching between some real
interference and intrusions used for training. Since only limited
intrusions can be included in training, in a realistic environment
some intrusions may not fit the trained interference model. As a
result, these intrusions may fit the fricative or affricate model
better than the interference model, though it does not fit either
model well. Therefore, we introduce a confidence measure here.
More specifically, a segment s is classified as dominated by a
fricative or an affricate when both (6) is satisfied and the
corresponding likelihood p(XS, dS|H1,k) is larger than a threshold,
which guarantees that segment s has a good fit with the
corresponding fricative or affricate model. The threshold is
chosen to be exactly above the corresponding likelihood of 2%
of training samples with the same segment size.

All the segments identified as dominated by fricatives or
affricates are included into target stream. Then a binary mask is
constructed by assigning 1 to a T-F unit within the target stream
and 0 otherwise. The target speech is then resynthesized with the
mask, which retains the acoustic energy from the mixture
corresponding to 1’s and rejects that corresponding to 0’s.

As an illustration, Fig. 3 shows the target stream and the
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Figure 3. (a) The mask obtained from the Hu-Wang model for
the mixture of speech and crowd noise with music, and (b) the
corresponding resynthesized speech. (c) The mask obtained
from the proposed system for the same mixture, and (d) the
corresponding resynthesized speech.
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resynthesized speech for the mixture of speech and crowd noise
with music. Compared with Fig. 1(b), we can see that the
majority of fricative and affricate signal is recovered, which is
missing from the output of Hu-Wang model shown in 3(b). At
the same time, a little interference is included into the
resynthesized speech.

5. EVALUATION

The system is tested with 20 utterances from the testing part of
the TIMIT database, mixing with 10 intrusions at different SNR
levels. The intrusions are white noise, electrical fan, rooster
crowing and clock alarm, traffic noise, crowd noise in
playground, crowd noise with music, crowd noise with clapping,
bird chirping and water flow, wind, and rain.

We evaluate the system with the following two measures:
the percentage of energy missed by the system among the total
energy of fricatives and affricates, referred to as PEL, and the
percentage of interference energy among the total energy
retained by the system as fricatives or affricates, referred to as
PNR. An ideal binary mask is used as the ground truth for target
speech, which is the computational goal for the system, as
described previously (see Sect. 2). Table 1 shows the average
PEL and PNR for the proposed system, and the average PNR of the
original mixture. Note that PEL of the original mixture is 0%. As
shown in the table, the proposed system is able to extract about
70% of the fricative and affricate energy from the mixture under
different SNR situations. It also retains a certain amount of
interference, which is not significant compared to the
interference included in the original mixture.

Table 1. PEL and PNR

Proposed system Mixture
Overall SNR (dB)

PEL (%) PNR (%) PNR (%)
0 33.48 35.11 82.17
5 32.39 21.19 61.38

10 29.39 8.47 36.05
15 29.60 5.34 16.39
20 29.88 3.30 6.21

Table 2. Segmental SNR for affricates, fricatives, stops, and
silence

Overall SNR (dB)
Proposed

system (dB)
SS

(dB)
Mixture

(dB)
0 -0.59 -10.40 -17.98
5 0.58 -7.59 -12.98

10 1.71 -4.72 -7.98
15 2.42 -1.35 -2.98
20 2.93 2.54 2.02

Table 2 shows the segmental SNR of the resynthesized
speech averaged over time frames containing affricates,
fricatives, stops, and silence, using clean speech as the signal.
Regions for stops and silence are included since they may
contain interference accepted by the proposed system. Other
regions are not considered since they contain little interference
accepted by the proposed system, and voiced speech is dominant
in these regions. For comparison, Table 2 also shows the
segmental SNR of the original mixture and that of the speech
enhanced using spectral subtraction (SS), a standard method for
speech enhancement [9]. As shown in the table, both the
proposed system and spectral subtraction obtain average SNR

improvement in every situation. The proposed system performs
significantly better than spectral subtraction, especially under
low SNR situations, which mainly due to the fact that spectral
subtraction cannot deal with non-stationary interference.

6. DISCUSSION

Based on analysis of event onset and acoustic-phonetic
properties of speech, the proposed system is able to separate
most fricative and affricate consonants without including much
interference into the separated speech. To our knowledge, it is
the first system that aims explicitly at separating fricatives and
affricates. Together with our previous research [6], we have
shown that unvoiced speech can be separated through onset-
based segmentation, feature-based classification, and subsequent
grouping. Currently, the system deals with only non-speech
interference. If the interference is an utterance from another
speaker, a further process of assigning speech segments to
corresponding speakers is required. This problem will be
addressed in future research.
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