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ABSTRACT

This paper focuses on optimal estimators of the magnitude

spectrum for speech enhancement. We present an analytical

solution for estimating in the MMSE sense the magnitude

spectrum when the clean speech DFT coefficients are mod-

eled by a Laplacian distribution and the noise DFT coeffi-

cients are modeled by a Gaussian distribution. Furthermore,

we derive the MMSE estimator under speech presence un-

certainty and a Laplacian model. Results indicated that the

Laplacian basedMMSE estimator yielded less residual noise

in the enhanced speech than the traditional Gaussian-based

MMSE estimator.

1. INTRODUCTION

Single-channel speech enhancement algorithms based on

minimummean-square error (MMSE) estimation of the short-

time spectral magnitude have received a lot of attention in

the past two decades [1]. A key assumption made in the

MMSE algorithms is that the real and imaginary parts of the

clean DFT coefficients can be modeled by a Gaussian distri-

bution. This Gaussian assumption, however, holds asymp-

totically for long duration analysis frames, in which the span

of the correlation of the signal is much shorter than the DFT

size. While this assumption might hold for the noise DFT

coefficients, it does not hold for the speech DFT coeffi-

cients, which are typically estimated using relatively short

(20-30 ms) duration windows. For that reason, several [2-

5] have proposed the use of non-Gaussian distributions for

modeling the real and imaginary parts of the speech DFT

coefficients. In particular, the Gamma and Laplacian proba-

bility distributions can be used to model the distributions of

the real and imaginary parts of the DFT coefficients.

The use of Gamma or Laplacian distributions, however,

complicates the derivation of the MMSE estimate of the

magnitude spectrum. This is partly because there is no an-

alytical expression for the pdf of the magnitude of the DFT

coefficients when the real and imaginary parts of the DFT
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coefficients are modelled by a Laplacian (or Gamma) distri-

bution. For that reason, alternative solutions were explored

in [2-5]. For instance, in [3] the authors approximated the

pdf of the magnitude of the DFT coefficients with a para-

metric function, and used that to derive a MAP estimator of

the magnitude spectrum. In [2], they derived separately the

estimators of the real and imaginary parts of the DFT co-

efficients assuming Gamma and Laplacian distributions for

the speech DFT coefficients. The two estimators combined

yielded an estimator for the signal DFT coefficients that was

complex valued.

In this paper, we derive a closed-form expression for the

pdf of the magnitude of the DFT coefficients, and use that to

derive the MMSE estimator of the speech magnitude spec-

trum based on a Laplacian model for the speech DFT coeffi-

cients and a Gaussian model for the noise DFT coefficients.

To further improve the amplitude estimation, we also incor-

porate speech presence uncertainty into the Laplacian based

estimator.

The paper is organized as follows. In section II, we de-

rive the Laplacian based MMSE estimator and in section III

we derive the MMSE estimator under signal presence un-

certainty. In Section IV, we evaluate the performance of the

proposed estimators, and in Section V we give the summary

and conclusions.

2. LAPLACIAN BASED SHORT-TIME SPECTRAL

AMPLITUDE ESTIMATOR

2.1. Derivation of Amplitude Estimator

Let y(n) = x(n) + d(n) be the sampled noisy speech sig-
nal consisting of the clean signal x(n) and the noise signal
d(n). Taking the short-time Fourier transform of y(n), we
get:

Y ( k) = X( k) +D( k) (1)

for k = 2 k/N where k = 0, 1, 2, ...N 1, and N is the

frame length. The above equation can also be expected in

polar form as

Yke
j y(k) = Xke

j x(k) +Dke
j d(k) (2)
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According to [1], the MMSE estimator ofXk is obtained as
follows:

X̂k = E{Xk|Y ( k)}, k = 0, 1, 2, ...N 1 (3)

=

R
0

R 2
0
xkp(Y ( k)|xk, xk)p(xk, xk)d xkdxkR

0

R 2
0
p(Y ( k)|xk, xk)p(xk, xk)d xkdxk

whereE[·] denotes the expectation operator. Making the as-
sumption that the spectral magnitudes and phases are inde-

pendent and that the phases are uniformly distributed1, we

have p(xk, xk) =
1
2 p(xk), where p(xk) is the density of

the spectral magnitudes. Under the assumption that the real

and imaginary parts of X( k) are modeled by a Laplacian
distribution, the density p(xk) of the spectral magnitudes is
given by [6]:

p(xk) =
2xk
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where In(·) denote the modified Bessel function of nth or-
der and x(k) = E{X2

k} is the signal variance. Using a
complex Gaussian distribution forD( k), it is easy to show
that [1]:

p(Y ( k)|xk, xk) (5)

=
1

d(k)
exp

Y 2k 2xk Re{e
j xY ( k)}+ x

2
k

d(k)

¸

where d(k) = E{D
2
k} is the noise variance. Finally, after

substituting Eq.(4) and Eq.(5) into Eq.(3) and using [7, Eq.

6.633.1] we get:

X̂k =
Ak +Bk
Ck +Dk

(6)
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1Note that these assumptions are true for the Gaussian model [1] but not

for the Laplacian model. Nevertheless, for simplicity purposes we used the

same assumptions.
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where k = x(k)/ d(k) and k = Y 2k / d(k)are the a
priori and a posteriori signal-to-noise (SNR) ratios respec-

tively, (.) is the gamma function and F (a, b, c;x) is the
Gaussian hypergeometric function [7, Eq. 9.100] . Equation

(6) gives the MMSE estimator of the spectral magnitudes

based on the assumption that the real and imaginary parts of

X( k) are modeled by a Laplacian distribution. We will be
referring to this estimator as the LapMMSE estimator.

3. DERIVATION OF AMPLITUDE ESTIMATOR

UNDER SPEECH PRESENCE UNCERTAINTY

In this section we derive the MMSE magnitude estimator

under the assumed Laplacian model and uncertainty of speech

presence. This is motivated by the fact that speech might not

be present at all times and at all frequencies. We therefore

consider a two-state model for speech events, i.e., that either

speech is present at a particular frequency bin (hypothesis

H1) or that is not (hypothesisH0). Intuitively, this amounts
to multiplying the estimator by a term that provides an esti-

mate of the probability that speech is present at a particular

frequency bin. Following [1], this new estimator is given

by:

X̂k = E(Xk|Y ( k),H
k
1 )P (H

k
1 |Y ( k)) (7)

where Hk
1 denotes the hypothesis that speech is present in

frequency bin k, and P (Hk
1 |Y ( k)) denotes the conditional

probability that speech is present in frequency bin k given
the noisy speech (complex) spectrum Y ( k). The condi-
tional probabilityP (Hk

1 |Y ( k)) can be computed using Ba-
yes’ rule [1]:

P (Hk
1 |Y ( k)) =

(Y ( k), qk)

1 + (Y ( k), qk)
(8)

where (Y ( k), qk) is the generalized likelihood ratio de-
fined by:

(Y ( k), qk) =
1 qk
qk

p(Y ( k)|H
k
1 )

p(Y ( k)|Hk
0 )

(9)
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where qk = P (Hk
0 ) denotes the a priori probability of

speech absence for frequency bin k.
Under hypothesis H0, Y ( k) = D( k), and assuming

that the noise DFT coefficients are modeled by a Gaussian

distribution with zero mean and variance d(k), it follows
that p(Y ( k)|H

k
0 ) will also have a Gaussian distribution

with the same variance, i.e.,

p(Y ( k)|H
k
0 ) =

1

d(k)
exp

µ
Y 2k
d(k)

¶
(10)

Under hypothesisH1, Y ( k) = X( k) +D( k), and
p(Y ( k)|H

k
1 ) will have the form [6]:

pY ( k)(y) = p(zr, zi) = pZr(k)(zr)pZi(k)(zi)̇ (11)

where Zr(k) = Re{Y ( k)}, Zi(k) = Im{Y ( k)}, and

pZr(k)(zr) and pZi(k)(zi)̇ are given by [6]:

pZr(k)(zr) =
k exp(

1
2 k
)

2
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2 kYk

"
exp

Ã
kzr

Yk
p

k

!
+ (12)

exp

Ã
kzrp
kYk

!
+ exp

Ã
kzrp
kYk

!
erf

Ã
kzrp
kYk

1p
k

!

exp

Ã
kzrp
kYk

!
erf

Ã
kzrp
kYk

+
1p
k

!#

where erf(.) is the error function. The pZr(k)(zr) density
was obtained by performing the convolution of the speech

Laplacian density with the noise Gaussian density. After

substituting Eq.(8), (10) and (11) into Eq.(7) we get the final

estimator (given by Eq.7) that incorporates speech-presence

uncertainty.

4. IMPLEMENTATION AND PERFORMANCE

EVALUATION

4.1. Implementation

As shown in Eq. (6), the derived LapMMSE estimator was

highly nonlinear as it involved infinite summations. We ini-

tially truncated the infinite summations to a large number of

terms, however, simulations indicated that such an approx-

imation led to numerical instability issues. For that reason,

we chose to use numerical integration techniques [8] to eval-

uate the integrals in (3).

The proposed estimator was applied to 20-ms duration

frames of speech using a Hamming window, with 50% over-

lap between frames. The “decision-directed” approach [1]

was used in the proposed estimators to compute the a priori

SNR k, with = 0.98. The enhanced signal was com-
bined using the overlap and add approach. The a priori

probability of speech absence, qk, was set to qk = 0.3 in
(9).

4.2. Performance Evaluation

Twenty sentences from the TIMIT database were used for

the objective evaluation of the proposed LapMMSE estima-

tor, 10 produced by female speakers and 10 produced by

male speakers. The TIMIT sentences were downsampled to

8 kHz. Speech-shaped noise constructed from the long-term

spectrum of the TIMIT sentences as well as F-16 cockpit

noise were added to the clean speech files at 0, 5 and 10

dB SNR. An estimate of the noise spectrum was obtained

from the initial 100-ms segment of each sentence. The noise

spectrum estimate was not updated in subsequent frames.

Objective measures were used to evaluate the perfor-

mance of the proposed estimators implemented with and

without speech presence uncertainty (SPU) and denoted as

LapMMSE-SPU and LapMMSE respectively. For compar-

ative purposes we evaluated the performance of the tradi-

tional MMSE estimator [1] with and without incorporating

speech presence uncertainty indicated as MMSE-SPU and

MMSE respectively. Table 1 lists the (absolute) segmen-

tal SNR values averaged across the 20 sentences tested. As

can be seen, higher segmental SNR values were obtained

consistently by the proposed LapMMSE estimators. Partic-

ularly large improvements were noted at higher SNR levels,

5 and 10 dB.

Informal listening tests indicated that speech enhanced

by the LapMMSE estimators had less residual noise. This

was confirmed by visual inspection of spectrograms of the

enhanced speech signals. Figure 1 shows the spectrograms

of the TIMIT sentence “The kid has no manners, boys”

enhanced by the LapMMSE-SPU and MMSE-SPU estima-

tors. The sentence was originally embedded in +5 dB S/N

speech shaped noise. Clearly, the sentence enhanced by the

LapMMSE-SPU estimator had less residual noise with no

compromise in speech distortion.

Estimator Speech-Shaped F-16 noise

0dB 5dB 10dB 0dB 5dB 10dB

MMSE 0.763 1.96 2.979 1.414 2.285 3.048

LapMMSE 1.149 4.647 7.182 1.819 5.122 7.528

MMSE-SPU 0.859 2.027 3.067 1.495 2.362 3.125

LapMMSE-SPU 1.867 5.113 7.792 2.65 5.657 8.198

Table 1. Comparative performance, in terms of segmental

SNR, of the Gaussian-based MMSE and Laplacian-based

MMSE estimators.

.

5. SUMMARY AND CONCLUSIONS

An MMSE estimator was derived for the speech magnitude

spectrum based on a Laplacian model for the speech DFT
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Fig. 1 Spectrogram of a TIMIT sentence in quiet (upper panel), speech enhanced by the Gaussian-based MMSE estimator

(middle panel) and by the Laplacian-based MMSE estimator (bottom panel).

coefficients and a Gaussian model for the noise DFT coef-

ficients. An estimator was also derived under speech pres-

ence uncertainty and a Laplacian model assumption. Re-

sults, in terms of objective measures, indicated that the pro-

posed MMSE estimator yielded better performance than the

traditional MMSE estimator based on a Gaussian model [1].
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