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ABSTRACT

Continuing our previous work [1, 2] on using air- and bone-conductive
integrated microphones, and in particular on using the direct filter-
ing approach [3] for speech enhancement in noisy environments,
we present in this paper a refined version of the direct filtering al-
gorithm. The new algorithm takes into account explicitly the leak-
age of background noise into the bone channel. We also present a
new algorithm that detects and removes an artifact known as teeth
clacks. Experiments show that the addition of the above algorithms
improves system performance to a large extent even in highly non-
stationary noisy environments.

1. INTRODUCTION

Speech Enhancement is one of the oldest disciplines of signal pro-
cessing. Though many techniques have been proposed to enhance
speech in the presence of stationary background noise, enhance-
ment in the presence of non-stationary background noise is still an
open problem. In our previous work [1, 2], we introduced air- and
bone-conductive integrated microphones and showed that such de-
vices can be used to reliably determine whether the speaker is talk-
ing or not, and furthermore, the two channels can be combined to
remove overlapping noises. We use ”WITTY”, which stands for
”Who Is Talking To You”, as our acronym for the air- and bone-
conductive microphones. A prototype of such devices is shown in
Figure 1. It contains two sensors: a regular close-talk (air) micro-
phone and a bone-conductive microphone. The close-talk micro-
phone captures wideband high-quality speech but is noise sensi-
tive. The bone sensor has the interesting property that it is insensi-
tive to background noise but only captures the low frequency por-
tion of the speech signals. Furthermore, the captured speech sig-
nals are distorted. Our aim is to combine the bone signals with the
close-talk signals to remove environment noise. For a detailed de-
scription of the Air- and bone-conductive integrated microphones
(WITTY microphones), the reader is referred to [2].

Our previous work [1, 2] used a channel mapping technique
for speech enhancement. It works by training a piecewise linear
mapping from the bone signal to the close-talk signal. One draw-
back of this approach is that it requires training for each speaker. In
[3], we introduced a new technique called Direct Filtering which
does not require any training. The basic idea is to directly design a
filter which performs distortion correction on the bone signal and
optimally combines the bone signal and the close-talk signal to
remove the background noise.

One of the primary reasons for using a bone sensor to aid
the close-talking channel is that it is insensitive to background
noise. However, in closed environments with large amounts of
background noise, a significant amount of the noise leaks into the

bone channel, thus negating the effect of the bone sensor. In this
paper, we present a modified version of the Direct Filtering algo-
rithm that takes into account explicitly the leakage of the back-
ground noise into the bone channel. We show by means of fre-
quency weighted segmental SNR that the new algorithm has an im-
proved performance over the old one.

We have also observed an artifact called teeth clack. While
talking, unconsciously, the upper and lower jaws come in contact
with each other resulting in a ‘click’ in the bone sensor. If not
tackled appropriately, this will distort the mapping function be-
tween the air and bone channels, resulting a negative effect on the
enhancement. In this paper, we also present an algorithm to detect
and remove automatically teeth clacks.

Fig. 1. Witty Prototype.

2. RELATED WORK

Graciarena et al. [4] combined the standard and throat micro-
phones in the noisy environment. They trained a mapping from
the concatenated features of both microphone signals in a noisy
environment to the clean speech. Compared to their system, our
algorithm does not need any training, is not environment depen-
dent and produces an audible speech signal so that the output can
be used for perception as well as speech recognition. Strand et. al.
[5] designed an ear plug to capture the vibrations in the ear canal,
and used the signals for speech recognition with MLLR adapta-
tion. Heracleous et. al. [6] used a stethoscope device to capture
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the bone vibrations of the head and use that for non-audible mur-
mur recognition. Like [5], they only used the bone signals for
speech recognition with MLLR adaptation.

Interestingly enough, on September 8, 2004, a commercial
headset product called Jawbone was released [7], which, as we do,
also integrates a bone sensor with an air microphone in order to
reduce background noise. According to the information from their
website, it seems that the bone signals are only used in their de-
vice for speech activity detection, which helps build a better noise
model than if speech activity is only detected from the air channel.
Possibly, a technique similar to traditional spectral subtraction is
then employed to enhance the speech signals. In our work, the
bone signals are used not only for speech activity detection but
also directly for speech enhancement in an integral way, as to be
shown in this paper.

3. LEAKAGE MODEL FOR DIRECT FILTERING

In the direct filtering model proposed in [3] it was assumed that the
noise, including background speech, does not leak into the bone
sensor. However, in closed environments, such as an office, at low
SNRs, a significant amount of the background noise leaks into the
bone channel. This leaked noise is then passed onto the enhanced
output, thus defeating the purpose of using the bone sensor. Hence
we propose a new formulation that explicitly models this leakage.

Let y(t) and b(t) denote the close-talk and bone signals, re-
spectively. Let x(t) denote the clean speech which is to be esti-
mated, u(t) be the close-talking microphone sensor noise, v(t) be
the background noise and w(t) the sensor noise associated with
the bone microphone. The mathematical model for direct filtering
with leakage may be represented as

y(t) = x(t) + v(t) + u(t) (1)

b(t) = h(t) ∗ x(t) + g(t) ∗ v(t) + w(t) (2)

where h(t) is the speech mapping function from the clean signal
in the close-talk channel to the signal in the bone channel, g(t) is
the noise leakage function that maps the background noise in the
close-talking channel to the noise leaked in the bone channel, and
g(t) ∗ v(t) models the amount of background noise that leaks into
the bone sensor.

Equation (1) may be re-written in the complex-frequency do-
main as

Yt(k) = Xt(k) + Vt(k) + Ut(k) (3)

Bt(k) = H(k)Xt(k) + Gt(k)Vt(k) + Wt(k) (4)

where k is the frequency band and Yt(k) is the kth frequency
component of ym[n] = y[n]w[m − n], a windowed version of
y[n] around time t. This notation applies to other quantities in
the above equation. It is assumed here that the various frequency
bands are independent, thus making the problem mathematically
tractable. Also, it is assumed that Vt(k) ∼ N(0, σ2

v(k)), Wt(k) ∼
N(0, σ2

w(k)), Ut(k) ∼ N(0, σ2
u(k)) and are all independent of

each other. It should be noted here that all the terms in equation
(3) are in the complex frequency domain. In the following analysis
we drop the argument (k) for simplicity.

We assume to be given an estimation of Ht, which is dis-
tributed as N(H0, σ

2
H), and an estimation of Gt, which is dis-

tributed as N(G0, σ
2
G). The clean speech signal Xt is given by

minimizing the following probability:

p(Xt, Vt, Ht, Gt|Yt, Bt, H0, G0, σ
2
u, σ2

v, σ2
w, σ2

H , σ2
G)

∝ p(Yt, Bt|Xt, Vt, Ht, Gt, σ
2
u, σ2

w)

p(H|H0, σ
2
H)p(G|G0, σ

2
G)p(Vt)p(Xt)

= p(Yt|Xt, Vt, σ
2
u)p(Bt|Xt, Vt, Ht, Gt, σ

2
w)

p(H|H0, σ
2
H)p(G|G0, σ

2
G)p(Vt)p(Xt)

(if we ignore the prior speech model p(Xt) by now)

∝ 1

(2π)5σ2
uσ2

vσ2
wσ2

Hσ2
G

exp[−Ft

2
]

where

Ft =
|Yt − Xt − Vt|2

σ2
u

+
|Bt − HtXt − GtVt|2

σ2
w

+
|Vt|2
σ2

v

+
|Ht − H0|2

σ2
H

+
|Gt − G0|2

σ2
G

(5)

Setting ∂Ft/∂Xt = 0, we get

Vt =
σ2

wYt + σ2
uH∗

t Bt − (σ2
w + |Ht|2σ2

u)Xt

σ2
w + H∗

t Gtσ2
u

(6)

Setting ∂Ft/∂Vt = 0, we get

Gt(Bt − HtXt − GtVt)
∗

σ2
w

+
(Yt − Xt − Vt)

∗

σ2
u

− V ∗
t

σ2
v

= 0 (7)

Substituting Vt above by (6), we get the solution for Xt as

Xt =
(σ2

w + σ2
uH∗

t Gt)Yt + [(σ2
u + σ2

v)H∗
t − σ2

vG∗
t ](Bt − GtYt)

σ2
v|Ht − Gt|2 + σ2

w + σ2
u|Ht|2 (8)

The above equation is intuitive as Bt −GtYt removes the leakage
in the bone sensor and the final output Xt is a weighted sum of the
signal in the close talking microphone and the leakage removed
bone sensor signal.

Setting ∂Ft/∂Ht = 0, we get

Ht =
σ2

wH0 + σ2
H(Bt − GtVt)X

∗
t

σ2
w + σ2

H |Xt|2 (9)

We can obtain a similar equation for Gt by setting ∂Ft/∂Gt = 0.
In order to estimate H0 we adopt the same approach as in [3]

by using the speech frames over the last N seconds (in our current
implementation N = 5), resulting in

H0 =
∑

Mt±
√

(
∑

Mt)2+4σ2
vσ2

w| ∑
B∗

t Yt|2
2σ2

v

∑
B∗

t Yt
(10)

where Mt = (σ2
v|Bt|2 − σ2

w|Yt|2) (11)

A similar equation can be obtained for G0, except the summation
is over the non-speech frames.

3.1. Results

To test our techniques, we collected speech data from two speakers
(one male and one female). Each read the first 42 sentences of the
Wall Street Nov. 92 script, while another male speaker, sitting
nearby, read newspaper. Note that the noise (background speech)
is highly non-stationary.
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To assess our algorithms, we use the frequency weighted seg-
mental SNR measure [8]. Such a measure seeks to obtain a seg-
mental SNR within a set of frequency bands normally spaced propo-
tionally to the ear’s critical bands. It is thus believed to produce an
SNR measure more closely related to a listener’s perceived notion
of quality. Because we are dealing with real speech recordings, we
do not know the signal and noise levels for each individual frame.
Instead, for each sentence, we first perform speech detection as
described in [1], and then compute the average energy from the
speech frames as the signal energy and the average energy from
the silent frames as the noise energy. Since the signal energy also
contains the noise energy, the SNR is slightly over-estimated. The
measure is given as follows:

SNRfw =
1

M

M−1∑
j=0

[
1

K

K−1∑
k=0

10 log10

Es,k,j

En,k,j

]
, (12)

where M is the number of utterances, K the number of frequency
bands (we use the mel-frequency bands), Es,k,j the average short-
term signal energy contained in the kth frequency band in the jth
utterance, and En,k,j the average short-term noise energy con-
tained in the kth frequency band in the jth utterance.

Table 1. Comparative results of the enhancement algorithm with
and without leakage modeling (SNRfw in dB)

raw without with
speaker SNRfw SNRfw ∆1 SNRfw ∆2

speaker 1 23.9 32.3 8.4 35.7 3.4
speaker 2 15.2 25.8 10.6 28.5 2.7

The results are shown in Table 1. The second column shows
the SNRfw of the raw data from the air microphone. The third
and fifth columns show the SNRfw of the enhanced speech with-
out and with leakage modeling, respectively. The fourth and sixth
columns show the gains. The direct filtering algorithm without
leakage modeling gains about 9.5 dB. By explicitly modeling the
leakage, we gain another 3 dB.

4. TEETH CLACKS

While talking, unconsciously, the upper and lower jaws sometimes
come in contact with each other resulting in a ‘click’ in the bone
sensor which we refer to as Teeth Clacks. Teeth clacks are char-
acterized by a high energy distribution in the medium and higher
frequencies (f ≥ fs

4
, fs = 16 KHz and is the sampling frequency).

Figure 2 shows the spectrogram of the close-talking (upper chan-
nel) and bone (lower channel) channels for a typical teeth clack.
As it can seen, teeth clacks are characterized by a spike in the bone
channel which is absent in the close talking channel. Failure to de-
tect and remove them causes an annoying click in the enhanced
signal. In the next section we analyze the effect of teeth clacks on
direct filtering.

4.1. Effect of Teeth Clacks on the estimation of H

The transfer function H is an optimal mapping (maximum likeli-
hood sense) between the clean speech signal X and the bone sig-
nal B (energy in the low frequency and null in the high frequency).
However, when teeth clacks occur, the estimated H is erroneous,
which subsequently distorts the estimated clean speech signal.

Fig. 2. Spectrogram of both close-talking and bone channel show-
ing a teeth clack which is characterized by high energy in the
medium and higher frequency bands in the bone sensor.

Refer to (10). In the absence of teeth clacks,

Bt(k) ≈ 0 for all k ≥ fs

4
(13)

When teeth clacks occur the magnitude of the higher order spectral
terms in the bone channel B are comparable to the magnitude of
the terms in the close talking microphone channel Y . As a result,
σ2

v|Bt|2 − σ2
w|Yt|2 is increased. The increase in the numerator

of equation 10 is much more than the increase in the denominator
because |Bt|2 ≥ B∗

t , thus causing a spike in the higher frequency
terms of H .

To understand the effect of this spurious spike in H on the esti-
mation of clean speech, consider (8) with σ2

u = 0 (sensor noise in
air channel is small), and ignore the effect of Gt since it is usually
small (i.e., Gt = 0). This leads (8) to the following form

Xt ≈ σ2
wYt + σ2

vH∗
t Bt

σ2
v|Ht|2 + σ2

w

(14)

As can be seen, Xt is essentially a weighted sum of the compo-
nents of the close talking microphone signal and the bone signal.
The weights are determined by H, σv, σw.

We need to consider two cases here.

4.1.1. Processing a frame with no clacks.

In this case the higher order terms of Bt are zero or close to
zero. If H is as estimated above (with spikes in higher order
terms), the terms that are affected by such a faulty computation
are σ2

vH∗
t Bt and σ2

v|Ht|2. In the high frequency bands where Ht

spikes, |Bt| � |Ht|, which yields

σ2
vH∗

t Bt � σ2
v|Ht|2 (15)

As a result the denominator in (14) is much greater than the nu-
merator, thus driving the estimated clean speech signal to zero.
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4.1.2. Processing a frame with clacks.

Following a similar analysis as before, we need to compare the
terms Bt and Ht. Since teeth clacks are present, the magnitudes
of each of the terms are comparable. Thus clacks are simply passed
through and in some cases may even be amplified if |Bt| � |Ht|.

4.2. Detection of Teeth Clacks

As explained in the previous section, teeth clacks are prominent in
the bone channel and not present in the close talking microphone
channel. This observation can be used to build a classifier to detect
teeth clacks. In particular we make use of

J =

K∑
k=1

1

P (k)
|Bt(k) − H(k)Yt(k)|2 (16)

with P (k) = σw(k)2 + σv(k)2|H(k)|2 + σH(k)2|Yt(k)|2
(17)

as the discriminant function. In the above equation, K is the num-
ber of frequency bins/components and σ2

H is the variance of H . In
essence the function H tries to match the the close talking signal
with the bone signal. When a teeth clack occurs there is a mis-
match between the two channels, resulting in a large value of J ;
otherwise, the value of J should be small.

A close examination of J leads to the conclusion that it is the
Mahalanobis Distance between Bt(k) and H(k)Yt(k). There-
fore, J follows a chi-squared distribution with K degrees of free-
dom.

The above distribution can be used in a significance (hypothe-
sis) testing framework to automatically select the threshold for J .
If H0 is the hypothesis that a non-clack frame is classified as a
non-clack frame, then we need to select the threshold α such that

P (J < ε|H0) = α (18)

In our algorithm we set α = 0.99. The value of ε can be obtained
from the χ2 distribution table, and in our case ε = 365.4.

4.3. Results

Figures 3 and 4 show the enhanced output for the same utterance
without and with teeth clack removal, respectively. As it can be
seen in Figure 3, when teeth clacks are not removed, a faulty trans-
fer function H results in a number of nulls in the medium and high
frequency bands. As a result the output is muffled. However, in
Figure 4 the entire range of the spectrum of the output is retained.

Fig. 3. Spectrogram of the enhanced signal without teeth clack
detection and removal.

Fig. 4. Spectrogram of the enhanced signal with teeth clack detec-
tion and removal.

5. CONCLUSIONS AND FUTURE WORK

We have presented two new techniques: leakage model and teeth
clack removal, to improve the direct filtering technique for the
speech enhancement of the air- and bone-conductive integrated
microphones. The leakage model is a mathematical framework
to extend the direct filtering to the cases where the bone sensor has
leakage. Wtih the teeth clack removal technique, the direct filter-
ing algorithm can effectively handle the cases where there are a lot
of teeth clacks. We have shown that the improved system is able
to effectively enhance speech signals even in highly non-stationary
noisy environment.
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