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ABSTRACT

Room reverberation causes two perceptual distortions on clean
speech: Coloration and long-term reverberation. These two
effects correspond to two physical variables: Signal-to-
reverberant energy ratio (SRR) and reverberation time,
respectively. Based on this observation, we propose a two-stage
algorithm that enhances reverberant speech from one-
microphone recordings. In the first stage, an inverse filter is
estimated to reduce coloration effects or increase SRR. The
second stage employs spectral subtraction to minimize the
influence of long-term reverberation. The proposed algorithm
significantly improves the quality of reverberant speech. A
comparison with a recent one-microphone enhancement
algorithm shows that our system produces significantly better
results.

1. INTRODUCTION

A main cause of speech degradation in practically all listening
situations is room reverberation. Although a person with normal
hearing is little affected by room reverberation to a considerable
degree, hearing-impaired listeners suffer from reverberation
effects disproportionally [12]. Also, reverberation causes
significant performance decrement for current automatic speech
recognition (ASR) and speaker recognition systems.
Consequently, an effective reverberant speech enhancement
system can be used for improving intelligent hearing aids design
and is essential for many speech technology applications.

In this article we study one-microphone reverberant speech
enhancement. This is motivated by the following two
considerations. First, a one-microphone solution is highly
desirable for many real-world applications such as hand-free
audio communication and audio information retrieval. Second,
moderately reverberant speech is highly intelligible in monaural
listening conditions. Hence how to achieve this monaural
capability remains a fundamental scientific question.

A number of reverberant speech enhancement algorithms
have been designed utilizing more than one microphone. For
example, microphone-array based methods [6], such as
beamforming techniques, attempt to suppress the sound energy
coming from directions other than that of the direct source and
therefore enhance target speech. As pointed out by Koenig et al.
[10], the reverberation tails of the impulse responses,
characterizing the reverberation process in a room with multiple
microphones and one speaker, are uncorrelated. Several

algorithms are proposed to reduce the reverberation effects by
removing the incoherent parts of received signals. Blind
deconvolution algorithms aim to reconstruct the inverse filters
without the prior knowledge of room impulse responses (for
example, see [8]). Brandstein and Griebel [5] utilize the extrema
of wavelet coefficients to reconstruct the linear prediction (LP)
residual of original speech.

Reverberant speech enhancement using one microphone is
significantly more challenging than that using multiple
microphones. Nonetheless, a number of one-microphone
algorithms have been proposed. Bees et al. [3] employs a
cepstrum-based method to estimate the cepstrum of
reverberation impulse response, and its inverse is then used to
dereverberate the signal. Several dereverberation algorithms (for
example, see [2]) are motivated by the effects of reverberation
on Modulation Transfer Function (MTF). Yegnanarayana and
Murthy [16] observed that LP residual of voiced clean speech
has damped sinusoidal patterns within each glottal cycle, while
that of reverberant speech is smeared and resembles Gaussian
noise. With this observation, LP residual of clean speech is
estimated and then the enhanced speech is resynthesized.
Nakatani and Miyoshi [13] proposed a system capable of blind
dereverberation by employing the harmonic structure of speech.
Good results are obtained but this algorithm requires a large
amount of reverberant speech produced using the same room
impulse response function. Despite these studies, existing
reverberant speech enhancement algorithms, however, do not
reach a performance level demanded by many practical
applications.

2. BACKGROUND

Reverberation causes a noticeable change in speech quality.
Berkley and Allen [4] identified that two physical variables,
reverberation time T60 and spectral deviation, are important for
reverberant speech quality. Consider the impulse response as a
combination of three parts, the direct, early, and late reflections.
While late reflections smear the speech spectra and reduce the
intelligibility and quality of speech signals, early reflections
cause another distortion of speech signal called coloration; the
non-flat frequency response of the early reflections distorts the
speech spectrum. The coloration can be characterized by a
spectral deviation defined as the standard deviation of room
frequency response. Increasing either spectral deviation or
reverberation time results in decreased reverberant speech
quality. Moreover, Jetzt [9] shows that spectral deviation is
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determined by signal-to-reverberant energy ratio (SRR), which is
the ratio between the energy traveling directly from a source to a
listener and the energy of all acoustic reflections reaching the
listener, and in turn, it is determined by talker-to-microphone
distance. Shorter talker-to-microphone distance results in higher
SRR and less spectral deviation, hence, less coloration.

Consequently, we propose a two-stage model to deal with
two types of degradations – coloration and long-term
reverberation – in a reverberant environment. In the first stage,
our model estimates an inverse filter to reduce coloration effects
in order to increase SRR. The second stage employs spectral
subtraction to minimize the influence of long-term reverberation.

3. INVERSE FILTERING

In the first stage of our algorithm, we derive an inverse filter to
reduce the reverberation effects and this stage is adapted from a
multi-microphone inverse filtering algorithm proposed by
Gillespie at el. [8]. An FIR inverse filter of the room impulse
response is estimated by maximizing the kurtosis of the linear
prediction (LP) residual of speech utilizing a block frequency-
domain adaptive filter. Then, inverse-filtered speech is obtained
by convolving the inverse filter with reverberant speech.

A typical result from the first stage of our algorithm is
shown in Fig. 1. Fig. 1(a) illustrates a room impulse response
function (T60 = 0.3 s) generated by the image model of Allen and
Berkley [1]. The equalized impulse response – the result of the
room impulse response in Fig. 1(a) convolved with the obtained
inverse filter – is shown in Fig. 1(b). As can be seen, the
equalized impulse response is far more impulse-like than the
room impulse response. In fact, the SRR value of the room
impulse response is –9.8 dB in comparison with 2.4 dB for that
of the equalized impulse response.

However, the above inverse filtering method does not
improve on the tail part of reverberation. Fig. 1(c) and (d) show
the energy decay curves of the room impulse response and the
equalized impulse response, respectively. As can be seen, except
for the first 50 ms, the energy decay patterns are almost
identical, and thus the estimated reverberation times are almost
the same, around 0.3 s. While the coloration distortion is reduced
due to the increase of SRR, the degradation due to reverberation
tails is not alleviated. In other words, the effect of inverse
filtering is similar to that of moving the sound source closer to
the receiver. In the next section, we introduce the second stage of
our algorithm to reduce the effects of long-term reverberation.

3. SPECTRAL SUBTRACTION

Late reflections in a room impulse response function smear
speech spectrum and degrade speech intelligibility and quality.
Likewise, an equalized impulse response can be decomposed
into two parts: early and late impulses. Resembling the effects of
the late reflections in a room impulse response, the late impulses
have deleterious effects on the quality of inverse-filtered speech;
by estimating the effects of the late impulses and subtracting
them, we can expect to enhance the speech quality.

In a previous version of this algorithm, Wu and Wang [15]
propose a one-stage method to enhance the reverberant speech
by estimating and subtracting effects of late reflections.

The smearing effects of late impulses lead to the smoothing
of the signal spectrum in the time domain. Therefore, we assume
that the power spectrum of late-impulse components is a

smoothed and shifted version of the power spectrum of the

inverse-filtered speech ( )tz :

( ) ( ) ( ) 22
;; ikSiwikS zl ∗−= ργ , (1)

where ( ) 2
;ikSz and ( ) 2

;ikSl are, respectively, the short-term

power spectra of the inverse-filtered speech and the late-impulse
components. Indexes k and i refer to frequency bin and time
frame, respectively. The symbol ∗ denotes convolution in the
time domain and ( )iw is a smoothing function. The short-term
speech spectrum is obtained by using hamming windows of
length 16 ms with 8 ms overlap for short-term Fourier analysis.

(a)

(b)

(c)

Time (ms)
(d)

Fig. 1. (a) A room impulse response function generated by the image
model in an office-size room. (b) The equalized impulse response
derived from the reverberant speech generated by the room impulse
response in (a) as the result of the first stage of our algorithm.
Energy decay curves (c) that computed from the room impulse
response function in (a). (d) That from the equalized impulse
response in (b). Each curve is calculated using the Schroeder
integration method. The horizontal dot line represents –60 dB
energy decay level. The left dash lines indicate the starting times of
the impulse responses and the right dash lines the times at which
decay curves cross –60 dB.
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The shift delay ρ indicates the relative delay of the late-impulse
components. The distinction of early and late reflections for
speech is commonly set at a delay of 50 ms in a room impulse
response function [11]. This delay reflects the properties of
speech and is independent from reverberation characteristics.
Consequently, it translates to approximately 7 frames for a shift
interval of 8 ms, and we choose 7=ρ as a result. Finally, the
scaling factor � specifies the relative strength of the late-impulse
components after inverse filtering and we set it to 0.32.

Considering the shape of the equalized impulse response,
we choose an asymmetrical smoothing function as the Rayleigh
distribution:
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where we choose 5=a and it controls the span of the smoothing
function. This smoothing function goes down to zero on the left
side quickly but tails off slowly on the right side; the right side
of the smoothing function resembles the shape of reverberation
tails in equalized impulse responses.

Assuming the early- and late-impulse components are
approximately uncorrelated., the power spectrum of the early-
impulse components can be estimated by subtracting the power
spectrum of the late-impulse components from that of the
inverse-filtered speech. The results are further used as an
estimate of the power spectrum of original speech. Specifically,
spectral subtraction [7] is employed to estimate the power

spectrum of original speech ( ) 2
~ ;ikSx :
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where 001.0=ε is the floor and corresponds to the maximum
attenuation of 30 dB.

Natural speech utterances contain silent gaps, and
reverberation fills some of the gaps right after high-intensity
speech sections. We identify these silent gaps by examine the
energy of inverse-filtered speech and energy reduction radio
after spectral subtraction in a time frame. For identified silent
frames, all frequency bins are attenuated by 30 dB. Finally, the

short-term phase spectrum of enhanced speech is set to that of
inverse-filtered speech and the processed speech is reconstructed
from the short-term magnitude and phase spectrum.

3. RESULTS AND DISCUSSIONS

A corpus of speech utterances from eight speakers, four females
and four males, randomly selected from the TIMIT database is
used for system evaluation. Informal listening tests show that the
proposed algorithm achieves substantial reduction of
reverberation and has little audible artifacts. To illustrate typical
performance, we show the enhancement results in Fig. 2.
Fig. 2(a) and (c) show the clean and the reverberant signal and
Fig. 2(b) and (d), the corresponding spectrograms, respectively.
The reverberant signal is produced by convolving the clean
signal and the room impulse response function in Fig. 1(a) with
T60 = 0.3 s. As can be seen, while the clean signal has fine
harmonic structure and silence gaps between the words, the
reverberant speech is smeared and its harmonic structure is
elongated.

To put our performance in perspective, we compare with a
recent one-microphone reverberant speech enhancement
algorithm proposed by Yegnanarayana and Murthy [16]. We
refer to this algorithm as the YM algorithm. The YM algorithm
applies weights to LP residual so that they resemble more
closely the damped sinusoidal patterns of LP residual from clean
speech. Fig. 2(e) and (f) show the processed speech using the
YM algorithm and its spectrogram, respectively. As can be seen,
spectral structure is clearer and some silence gaps are attenuated.
The processed speech using our algorithm and its spectrogram
are shown in Fig. 2(g) and (h). As can be seen, the effects of
reverberation have been significantly reduced in the processed
speech. The smearing is lessened and many silence gaps are
clearer. The figure clearly shows that our algorithm enhances the
reverberant speech more than does the YM algorithm. An audio
demonstration also can be found at http://www.cse.ohio-
state.edu/~dwang/demo/WuReverb.html.

Quantitative comparisons are obtained from the speech
utterances of the eight speakers separately utilizing frequency-
weighted segmental SNR [14] and presented in Table I. rev

fwSNR ,
YM
fwSNR , and proc

fwSNR represent the frequency-weighted

segmental SNR values of reverberant speech, the processed
speech using the YM algorithm, and the processed speech using
our algorithm, respectively. The SNR gains by employing the
YM algorithm and our algorithm are denoted by revYM

fwSNR − and
revproc

fwSNR − , respectively. As can be seen, the YM algorithm

obtains an average SNR gain of 0.74 dB compared to that of
4.15 dB by our algorithm.

Although our algorithm is designed for enhancing
reverberant speech using one microphone, it is straightforward to
extend it into multi-microphone scenarios. Many inverse
filtering algorithms, such as the algorithm by Gillespie et al. [8],
are originally proposed using multiple microphones. After
inverse filtering using multiple microphones, the second stage of
our algorithm – the spectral subtraction method – can be utilized
for reducing long-term reverberation effects.

Table I. The systematic results of reverberant speech enhancement for
speech utterances of four female and four male speakers randomly
selected from the TIMIT database. All signals are sampled at 8 kHz.

Speaker/
Gender

rev
fwSNR

(dB)

YM
fwSNR

(dB)

proc
fwSNR

(dB)

revYM
fwSNR −

(dB)

revproc
fwSNR −

(dB)
Female#1 -3.64 -3.06 0.92 0.58 4.56
Female#2 -3.51 -3.05 0.74 0.46 4.25
Female#3 -3.86 -3.19 -0.20 0.68 3.66
Female#4 -4.12 -3.29 0.73 0.83 4.84
Male#1 -3.86 -2.65 -0.92 1.21 2.94
Male#2 -3.33 -2.68 1.77 0.65 5.10
Male#3 -3.30 -2.53 1.20 0.76 4.49
Male#4 -3.50 -2.76 -0.13 0.75 3.38
Average -3.64 -2.90 0.51 0.74 4.15
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To conclude, we have presented a two-stage reverberant
speech enhancement algorithm using one microphone, and the
stages correspond to inverse filtering and spectral subtraction.
The evaluations show that our algorithm enhances the quality of
reverberant speech effectively and performs significantly better
than a recent reverberant speech enhancement algorithm.
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Fig. 2. Results of reverberant speech enhancement: (a) clean speech,
(b) spectrogram of clean speech, (c) reverberant speech, (d)
spectrogram of reverberant speech, (e) speech processed using the
YM algorithm, (f) spectrogram of (e), (g) speech processed using
our algorithm, and (h) spectrogram of (g). The speech is a female
utterance “She had your dark suit in greasy wash water all year,”
sampled at 8 kHz.
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