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ABSTRACT

In this paper we give a solution on how to overcome the assump-
tion of statistical independence of adjacent frequency bins in noise
reduction techniques. We show that under relaxed assumptions
the problem results in an a-priori SNR estimation problem, where
all available noisy speech spectral amplitudes (observations) are
exploited. Any state-of-the-art noise power spectral density (psd)
estimation and weighting rule can be used – they do not need to be
restated. In order to solve for an estimator well suited for real-time
applications, we model the a-priori SNR values as Markov pro-
cesses w.r.t. frequency. On the basis of the formulation by Ephraim
and Malah, this leads to a new a-priori SNR estimator that yields
fewer musical tones.

1. INTRODUCTION

A large number of criteria for speech spectral amplitude estimators
has been published. They lead to so-called weighting rules that
are applied to the noisy speech spectral amplitude in order to get
the estimated speech spectral amplitude. Among these are power
estimation (equivalent to power spectral subtraction) [1], Wiener
filtering [2], maximum likelihood estimation (ML) [3], MMSE es-
timation of the spectral amplitude [4], MMSE estimation of the
log-spectral amplitude [5] (the two latter approaches by Ephraim
and Malah), and minimum least square amplitude estimation [6].

All of the approaches listed above assume the statistical inde-
pendence of adjacent frequency bins. This is of course far from
reality, since two effects contribute to the statistical dependence
over frequency: First the short-time Fourier transform and its win-
dow function. Windowing in the time domain corresponds in the
frequency domain to convolution with the Fourier transform of
the window impulse response. Although the spectral maximum
of the window function usually is narrow, direct neighbors in the
frequency domain show a dependence even if the time domain sig-
nal is white noise. In practice however, background noises are far
from being spectrally white, which additionally contributes to the
statistical dependence of adjacent frequency bins. Secondly, the
speech signal itself inherits some spectral envelope as it is gener-
ated by the vocal tract.

There are several proposals for post-processing the enhanced
speech spectrum that work inter- and intra-frame oriented [7–9].
They mainly try to eliminate musical tones. These approaches
however are only available as non-causal algorithms requiring ad-
ditional delay in a real implementation. Additionally, they are
quite heuristic, and sometimes focus more on intelligibility rather
than the total quality of the speech signal.

Following to some extent the terminology used by Cohen [10],
in section 2 we will introduce an estimator (in analogy to a weight-

ing rule) that uses all observations available: The neighboring, the
past, and possibly even future observations. This approach will
then be further developed without the assumption of statistical in-
dependence of adjacent frequency bins. This means that inter- as
well as intra-frame correlations are exploited during the estima-
tion process. In analogy to [10], subsection 2.1 will show that our
general problem formulation still allows to use all known weight-
ing rules, which is an important result. It directly leads to the
formulation of a speech spectral variance estimator in subsection
2.2 and an a-priori SNR estimator in subsection 2.3. Section 3
gives a practical solution for a causal, decision-directed a-priori
SNR estimator (like Ephraim and Malah’s) exploiting both inter-
and intra-frame correlations. Finally, in section 4 we discuss the
performance of the algorithm found.

2. AN ESTIMATOR BASED ON ALL OBSERVATIONS
AVAILABLE

2.1. Spectral Amplitude Estimation

We assume the clean speech signal to be distorted by additive
noise, hence the noisy observation at time instant (or frame num-
ber) � can be expressed in the frequency domain after short-time
Fourier transform (STFT) of length � as

����� � ����� ������� (1)

with � being the frequency index regarded in the following only
from � to ���, ����� being the clean speech, and ����� being
the noise in frame �. Let’s denote then
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as knowledge about all observations form time instant � until ��.
We don’t want to restrict ourselves to any specific distortion

measure, therefore we assume an arbitrary distortion�������� �� 	
to be minimized. An estimator for the spectral amplitude �����
that takes into account all observations made until time instant ��

is then
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Note that if �� 
 � we derive a non-causal estimator, meaning
that the estimate ������ is computed after the observations ������,
� � �� ���� ���, get available. This approach may be very useful
for off-line speech enhancement as well as for robust speech recog-
nition, where the delay constraints often times are not as tight as in
conversational telephony applications. The usually addressed case
�� � � however yields the speech estimates right after availability
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of the noisy observations at time instant �, which leads then to a
causal estimator.

Instead of (2), e.g., Ephraim and Malah [4, 5] propose weight-
ing rules based on

������ � �����	
��

���
������ ����������� (3)

where only the observation in frequency bin � of frame � is ex-
ploited for the derivation of the weighting rule. Accordingly, they
assume statistical independence between any two frequency bins
������ and ������, as well as between any two time instants
���

��� and ���
���. Cohen’s novelty [10] was that he omitted

the latter assumption, which leads then to an estimator
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We do not require both afore mentioned assumptions: We will
use instead a – relaxed – assumption that is implicit to any ap-
proach based on a priori SNR estimation. Assumption (A): Given
the speech spectral variance ���

���, then ����� is statistically in-
dependent of any ���

���� for �� �� � and �� �� �.
We want to solve now (2) in analogy to [10]. Since there is no

straightforward solution, we introduce the speech spectral variance
���

��� as a help variable that is known. By applying assumption
(A) equation (2) becomes
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If we compare this to the conventional approach in (3), we find that
they are essentially the same, if the conventional approach also as-
sumes knowledge of a speech spectral variance ���

���. Thus we
can conclude, that due to the relaxed assumption (A) the exploita-
tion of all observations does not require a restatement of a weight-
ing rule. Instead, all weighting rules having (an estimate of) the
speech spectral variance as an intermediate step can be used (e.g.
the approaches by Ephraim and Malah [4, 5], Cohen [10], but it
can be also the Wiener filter [11]).

In reality of course we don’t know ���
���, but we can esti-

mate it given all available observations. This can be expressed as

������
���� � ���������

��� �
�

� �� (6)

The estimation of the speech spectral variance according to (6)
will make the difference to state-of-the-art speech enhancement.
Thus we can fully focus on an improved speech spectral variance
estimate ������

����, given all observations ��
�

� .

2.2. Speech Spectral Variance Estimation

The speech spectral estimate after (6) is
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In order to suitably exploit the knowledge about all observations
��

�

� we follow a similar approach as before. We assume however
all speech spectral variances in frame � to be known and apply
assumption (A) so that the pdf in (7) becomes
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Again, in a practical system we do not know the speech spectral
variances in frame �, but we assume having preliminary estimates
���
����

� �
�, 
 � 
� ���� ���, according to any state-of-the art ap-

proach, available. While each single ���
����

��
� represents the ob-

servation sequence ��
�

� �
� (over time) without making use of the
statistical dependence over frequency, the whole set of preliminary
speech spectral variance estimates ���

����
��
�, 
 � 
� ���� ��� al-

lows us to exploit statistical dependence also over frequency.
The preliminary speech spectral variance estimate is the basis

for our final speech spectral variance estimator formulated as
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Note that we have omitted the observation �����. This can be done
since �������

���� sufficiently represents the observation at frequency
bin � for the purpose of a speech spectral variance estimation.

2.3. Noise psd Estimation and SNR Estimation

As in many approaches to speech enhancement, we assume some
noise psd estimation to be performed in a first step. In particular,
we assume a noise spectral variance �����

���� � ���������
����

�

� �

to be estimated from the observations1. In the rest of the paper we
focus on the causal case (�� � �). An example for a simple causal
noise psd estimation during speech pause is given by

�������� � ������������� � ��� ���������
� (10)

with a smoothing factor � � 
��. During speech activity the noise
spectral variance is kept constant �������� � ������������.

Taking the noise spectral variances ������
� as deterministic
and known variables, and looking for a causal estimator solution
to (9), we can restate (9) as a so-called a-priori SNR estimator

�������� � ���������
���������
�� ���� ��

�
������������������ (11)

with the a-priori SNR [4] defined as

������� ��
��������

��������
� (12)

Furthermore, an a-posteriori SNR can be defined as

����� ��
�������

�

��������
� (13)

1It is important to note that in our formalism also the noise estima-
tor may exploit all observations ��

�

�
. While statistical dependence over

frequency is often times exploited already in state-of-the-art noise psd es-
timation techniques (e.g. those operating on a Bark scale), the develop-
ment of non-causal techniques (�� � �) could give better results especially
in low-energy word endings, since a few frames look-ahead into the next
speech pause helps finding an interpolated instead of an extrapolated noise
estimate. We will leave this however as an outlook for further work to be
done.
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Each of the preliminary a-priori SNR estimates ���

������ with � �
�� ���� ���, already incorporates knowledge about all the past ob-
servations in frequency bin �. The estimator we are looking for
shall of course not be the trivial (state-of-the-art) solution �������� �
���������, but a solution that also takes advantage of the statistical
dependence of adjacent a-priori SNR values. What remains to be
formulated now is a practical solution to (11).

Once the noise spectral variance (and thereby the a-posteriori
SNR) and the a-priori SNR are estimated properly by exploiting
all available observations, most of the known weighting rules can
be applied:

������ � ���������� 	����� � 
����� (14)

In summary, our proposed system is composed of the four steps
noise psd estimation (��������), preliminary estimation of the a-
priori SNR ���

������, estimation of the a-priori SNR �������� taking
into account also neighboring preliminary a-priori SNR values,
and finally application of a weighting rule ����������� ����.

3. NEW APPROACH TO A-PRIORI SNR ESTIMATION

This section presents a practical solution to (11). The prelimi-
nary a-priori SNR estimates can be found using the well-known
decision-directed estimator by Ephraim and Malah [4] with a sub-
sequent limiting function

���������� � �
���

������

���������
���

� ��� ���	
�	����� �� ��

��������� � �	
������������ ������ (15)

The factor� � ���� controls the trade-off between residual speech
distortions and musical noise. The a-priori SNR threshold is cho-
sen to be -25 dB for an agreeable level of residual noise.

Assuming the preliminary a-priori SNR estimates having Markov
property over frequency, (11) becomes a function2

�������� � 
 ��������� � ��� ���������� ��
�
����� � ���� (16)

We introduce a correlation parameter �����, that reflects the amount
of intra-frame correlation of the a-priori SNR estimates. Assuming
equal statistical dependence to the right and to the left neighbor,
the final estimator 
 ��� reads then

�������� � ����� � ��
�
������

�
�� �����

�
�
�
�������� � �� � �������� � ��

�
(17)

with

����� � ������������ ���� ��
�
���������� (18)

The rationale behind making ����� dependent on the preliminary
a-priori SNR estimates is the following: The higher the SNR, the
less it should be modified by its neighbors, since it is likely to be a
spectral speech harmonic, which should be preserved as much as
possible. At low SNRs however, especially during speech pause,

2As justification for (16) some analogy to channel robust speech trans-
mission can be stated, namely scalar quantized line-spectral frequency
(LSF) parameters, which show also inter- and intraframe correlation. A
1st order Markov modeling over time and LSF index (here: frequency)
was shown to give large improvements [12, section VII].

For each frame � do:
For all � � �� �� ���� ��� compute

preliminary estimates ���������, (15).

Initialize ���
������� 
�

���
������

and ���������� � �� 
� �����������.
For all � � �� �� ���� ��� compute

prediction parameters �����, (20), and
final estimates ��������, (17).

Table 1. Summary of the new a-priori SNR estimation approach.

(17) performs a smoothing between adjacent frequency bins which
avoids local single spectral harmonics, typically called musical
noise. Therefore, we get the following constraints for designing
the function (18):

����� �

�
� if ����������� (speech only)
� if ���

������ � � (noise only)�
(19)

Signal-to-noise ratio and speech presence/absence probability are
very closely related. Therefore we successfully employed a speech
presence probability estimator

����� � �� ����� �� (20)

with ����� �� being the speech absence probability as defined in
[13, equation (16)]. An alternative realization of a speech ab-
sence/presence estimator can be found e.g. in [14]. In summary,
the proposed a priori SNR estimation is listed in Table 1.

4. EXPERIMENTAL RESULTS

For experimental evaluation we employed the simple noise spec-
tral variance estimation as described in section 2.3.

As a baseline system we employed a Wiener-type of filter as
weighting rule [11] for the spectral amplitudes

��
���� �

���������

� � ���
������

� ������ � ��
���� � 
����� (21)

formulated using a-priori SNR values that are computed via Ephraim
and Malah’s approach (15).

Our new scheme employed the improved a-priori SNR estima-
tion following Table 1 and applied the weighting rule

����� �
��������

� � ��������
� ������ � ����� � 
����� (22)

Simulating the proposed new algorithm it turns out that musi-
cal tones are significantly reduced, while the speech signal distor-
tion remains the same as with the reference system. In Fig. 1 an
exemplary part of a signal is shown (sampling frequency �� � �
kHz, additive street noise at about � dB). It can be seen that our
new approach significantly reduces the musical tones in those sig-
nal segments, where only background noise is present (see espe-
cially frame index 1...15). The signal quality during active speech
periods remains almost equal. Therefore we can conclude that us-
ing our a-priori SNR estimator (17) with a correlation parameter
being a measure of speech presence, mainly the statistical depen-
dence of the noise in different frequency bins is exploited. The
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(a) Clean Signal
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(b) Noisy Signal
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(c) Enhanced Signal
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(d) Enhanced Signal

Fig. 1. Signal frame and short time Fourier spectrum of the (a)
clean signal, (b) noisy signal, (c) enhanced signal of baseline sys-
tem, (d) enhanced signal of proposed algorithm.

solution obtained shows a similar performance as the MMSE LSA
weighting rule by Ephraim/Malah [5] which is improved by our a-
priori SNR estimator. It is left open to the reader to derive different
practical solutions to (11) that focus more on reducing the speech
signal distortion.

5. CONCLUSIONS

In this paper we have shown how to overcome the commonly used
assumption of statistical dependence of frequency bins in speech
enhancement. It turned out that state-of-the-art weighting rules
can still be used under the new, relaxed assumptions. On the basis
of these fundamental findings we proposed a new a-priori SNR es-
timator closely related to the one by Ephraim and Malah, however
with some post-processing based e.g. on a speech presence mea-
sure, that represents the correlations of adjacent frequency bins.
This new technique yields state-of-the-art quality during active
speech segments, however significantly reduces musical noise in
segments where only noise is present. Apart from the specific pro-

posed estimator, our general approach now opens the door for a va-
riety of solutions to an improved computation of the a-priori SNR.
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