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ABSTRACT

In this paper, we propose a Bayesian approach for the estimation

of the short-term predictor parameters of speech and noise, from

the noisy observation. The resulting estimates of the speech and

noise spectra can be used in a Wiener filter or any state-of-the-art

speech enhancement system. We utilize a-priori information about

both speech and noise in the form of trained codebooks of linear

predictive coefficients. In contrast to current Bayesian estimation

approaches that consider the excitation variances as part of the

a-priori information, in the proposed method they are computed

analytically based on the observation at hand. Consequently, the

method performs well in nonstationary noise conditions. Experi-

mental results confirm the superior performance of the proposed

method compared to existing Bayesian approaches, such as those

based on hidden Markov models.

1. INTRODUCTION

The freedom and flexibility provided by mobile communications

introduces new challenges, one of the most prominent being the

suppression of background acoustic noise. Mobile users commu-

nicate in different environments with varying types and amounts of

background noise. Noise reduction remains a challenging problem

largely due to the wide variety of background noise types and the

difficulty in estimating their statistics. A majority of noise suppres-

sion techniques fall into the category of single-channel algorithms

that have only a single microphone to obtain the input signal, and

are thus attractive in mobile applications due to cost and size fac-

tors. Examples of such methods include [1, 2]. A drawback is that

noise estimates need to be obtained from the noisy speech observa-

tion. This has proved to be a particularly difficult task, especially

in nonstationary noise conditions. Most noise estimation methods

typically employ a buffer of past noisy data from which estimates

are obtained [3, 4]. While on the one hand large buffers result in

accurate estimates, on the other hand they make it difficult to deal

with changing noise, which is often the case in practice.

A method to estimate the short-term predictor (STP) parame-

ters of speech and noise using a-priori information was presented

in [5]. The STP parameters consist of the linear predictive (LP)

coefficients and the excitation variance, which is the variance of

the prediction error. The use of a-priori information about noise

eliminates the dependence on buffers of past data providing good

performance in nonstationary noise conditions [6]. The a-priori in-

formation consists of trained codebooks of LP coefficients. Each

pair of vectors from the speech and noise codebooks, together with
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the (unknown) excitation variances represent a model of the noisy

speech spectrum. The excitation variances are determined by find-

ing the best spectral fit between the observed and the modelled

noisy spectrum, with respect to a particular distortion measure.

The codebook pair that minimizes the distortion measure, together

with the corresponding excitation variances are selected as the best

representation of the underlying speech and noise spectra. In [7],

maximum-likelihood (ML) estimates of the STP parameters were

obtained by using the Itakura-Saito distortion measure. By elim-

inating the dependence on long-term estimates of the noise spec-

trum, it is possible to react to quickly changing noise conditions.

In the ML estimation proposed in [7], the LP coefficients were

considered to be deterministic parameters. In this paper, we treat

them as random variables and obtain minimum mean square error

(MMSE) estimates. While in [7], one pair of speech and noise

LP vectors was selected from the codebooks, the MMSE estimate

of the speech (noise) LP vector is a weighted sum of the speech

(noise) codebook vectors. Such a soft-decision estimation ap-

proach allows for a proportionate contribution from closely com-

peting candidates.

The HMM based systems [1, 2] also perform Bayesian esti-

mation using a-priori information. In [1], the clean signal is mod-

elled using Gaussian AR HMMs. The minimum mean-squared

error (MMSE) estimator of clean speech given the noisy speech

is obtained as a weighted sum of MMSE estimators correspond-

ing to each state of the HMM for the clean signal. This approach

is generalized in [2] to include noise HMMs as well. However,

the HMM based systems treat the excitation variance as part of

the a-priori information. The MMSE estimate in [8] also treats

the excitation variance as part of the a-priori information. In the

method proposed in this paper, in addition to obtaining the MMSE

estimate of the speech and noise LP coefficients, we also compute

the MMSE estimate of the speech and noise excitation variances

based on the observed noisy speech and the codebooks. We elim-

inate the dependence on conventional noise estimation schemes,

which is a fundamental limitation of current single-channel meth-

ods. Consequently, the method proposed here can perform well in

nonstationary noise conditions.

2. BACKGROUND

In this section, we provide a brief overview of the codebook based

ML estimation procedure. Consider an additive noise model where

speech and noise are independent:

y(n) = x(n) + w(n), (1)
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where y(n), x(n) and w(n) represent the noisy speech, clean

speech, and noise respectively. We have trained codebooks of

speech and noise spectral shapes parameterized as LP coefficients.

We consider only the envelope of the spectrum and not its fine

structure. The noisy spectrum can be modelled by a combination

of speech and noise LP spectral shapes from the respective code-

books, together with their excitation variances. Given the spectral

shapes and excitation variances, the modelled noisy spectrum can

be written as

P̂y(ω) =
σ2

x

|Ax(ω)|2 +
σ2

w

|Aw(ω)|2 , (2)

where σ2
x and σ2

w are the excitation variances of clean speech and

noise respectively, and

Ax(ω) =

p∑
k=0

axke−jωk, Aw(ω) =

q∑
k=0

awke−jωk. (3)

θx = (ax0 , . . . , axp), θw = (aw0 , . . . , awq ) are the LP coeffi-

cients of clean speech and noise with p, q being the respective LP-

model orders and ax0 = aw0 = 1. The parameters to be estimated

are {σ2
x, σ2

w, θx, θw}. The codebook indices corresponding to the

ML estimate of the speech and noise LP vectors are given by

{i∗, j∗} = arg min
i,j

{ min
σ2

x,σ2
w

dIS(Py,
σ2

x

|Ai
x|2 +

σ2
w

|Aj
w|2

)}, (4)

where Ai
x(ω) and Aj

w(ω) are the spectra of the ith and jth speech

and noise codebook entries respectively and dIS is the Itakura-

Saito measure [9]. For a given Ax(ω) and Aw(ω), the excita-

tion variances that minimize the Itakura-Saito distortion between

Py(ω) and P̂y(ω) can be shown to be the solution to the following

system of equations [6]:

C

[
σ2

x

σ2
w

]
= D, (5)

where C,D are given by

C =

[ ‖ 1
P2

y (ω)|Ax(ω)|4 ‖ ‖ 1
P2

y (ω)|Ax(ω)|2|Aw(ω)|2 ‖
‖ 1

P2
y (ω)|Ax(ω)|2|Aw(ω)|2 ‖ ‖ 1

P2
y (ω)|Aw(ω)|4 ‖

]
,

D =

[
‖ 1

Py(ω)|Ax(ω)|2 ‖
‖ 1

Py(ω)|Aw(ω)|2 ‖

]
, (6)

where ‖f(ω)‖ =
∫ |f(ω)|dω.

3. BAYESIAN ESTIMATION

In this section, we first derive the Bayesian MMSE estimates of the

speech and noise STP parameters by treating the speech and noise

LP coefficients and their excitation variances as random variables.

The resulting framework is then used to obtain MMSE estimates of

two useful functions of the STP parameters, one of which is shown

to result in the MMSE estimate of the clean speech waveform,

given the noisy speech.

3.1. MMSE estimation of STP parameters

Let θx and θw denote the random variables corresponding to the

speech and noise LP coefficients respectively. Let σ2
x and σ2

w

denote the random variables corresponding to the speech and

noise excitation variances respectively. We wish to jointly es-

timate the speech and noise LP coefficients and the excitation

variances such that the mean-squared error is minimized. Let

θ = [θx, θw, σ2
x, σ2

w]. The desired MMSE estimate can be written

as

θ̂ = E{θ|y}, (7)

where y = [y(1)y(2) . . . y(N)] is the vector of noisy observations

for the current frame, with N the frame length. We rewrite (7) as

θ̂ =

∫
Θ

θp(θ|y)dθ =

∫
Θ

θ
p(y|θ)p(θ)

p(y)
dθ, (8)

where the integral is over the space Θ = Θx × Θw × Σx × Σw,

where Θx, Θw represent the support-space of the vectors of speech

and noise LP coefficients and Σx, Σw represent the support-space

for the speech and noise excitation variances. From the indepen-

dence assumption, we have

p(θ) = p(θx, σ2
x)p(θw, σ2

w). (9)

For simplicity, we assume p(θx, σ2
x) = p(θx)p(σ2

x) and likewise

for the noise.

We next show that given θx, θw and the noisy speech y, the

likelihood p(y|θ) decays rapidly from its maximum value as a

function of the deviation from the ML estimate of the variances

σ2,ML
x and σ2,ML

w obtained using (5) and (6). We first consider the

case where noise is not present. In the absence of background

noise, under Gaussianity assumptions, the probability density of

the speech samples given the LP parameters can be written as

px(x|ax, σ2
x) =

1

(2π)N/2|Rx|1/2
exp(−1

2
xT R-1

x x), (10)

where x = [x(0)x(1) . . . x(N -1)]T , ax = [1 ax1 ax2 . . . axp ]T

and Rx = σ2
x(AT

x Ax)-1, where Ax is the N × N lower trian-

gular Toeplitz matrix with [1ax1ax2 . . . axp0 . . . 0]T as the first

column. Assuming that the frame length is large so that the co-

variance matrix Rx can be described as circulant and is hence di-

agonalized by the Fourier transform, we have Rx = F Hσ2
xΛxF ,

where F denotes the Fourier transform matrix, the superscript H

denotes complex conjugate transpose and Λx is a diagonal matrix

containing the eigenvalues of Rx scaled down by σ2
x. We wish to

study the effect of a deviation δx in the excitation variance σ2
x on

px(x|ax, σ2
x). Let R′

x = F H(σ2
x + δx)ΛxF . We have

px(x|ax, σ2
x + δx) =

1

(2π)N/2|R′
x|1/2

exp(−1

2
xT R′

x
-1
x)

=
1

(2π)N/2(σ2
x + δx)

N
2

∏N
i=1 λxi︸ ︷︷ ︸

A

exp(−1

2

N∑
i=1

|Xi|2
(σ2

x + δx)λxi

),

︸ ︷︷ ︸
B

(11)

where Xi, 1 ≤ i ≤ N are the Fourier transform coefficients of

x. We note that δx can take values in the range [−σ2
x,∞). For

positive values of δx, the exponential in term B converges to one

and the behavior of the likelihood is dominated by (σ2
x + δx)

−N
2 ,

which indicates a rapid decay. For negative values of δx, term B

dominates resulting in an exponential decay of the likelihood.

Considering the case where noise is present, we can show in a
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similar fashion

py(y|ax,aw, σ2
x + δx, σ2

w + δw) (12)

=

N∏
i=1

exp(− 1
2

|Yi|2
(σ2

x+δx)λxi
+(σ2

w+δw)λwi
)

(2π)1/2[(σ2
x + δx)λxi + (σ2

w + δw)λwi ]
1/2

,

where Yi, 1 ≤ i ≤ N are the Fourier transform coefficients of y
and δw, λwi are defined analogously to δx, λxi respectively. It can

be seen from (12) that the likelihood exhibits a behavior similar to

the clean speech case for both positive and negative values of δx

and δw.

Thus given θx, θw and the noisy speech y, the likelihood is

significant only at the ML estimate of the excitation variances and

we can approximate (8) as

θ̂ ≈
∫

Θx

∫
Θw

θ′ p(y|θx, θw; σ2,ML
x , σ2,ML

w )p(θ′)
p(y)

dθxdθw, (13)

where θ′ = [θx, θw, σ2,ML
x , σ2,ML

w ] and θ̂ = [θ̂x, θ̂w, σ̂2
x, σ̂2

w].
Note that we now have only a double integral over the support-

space of the LP coefficients. p(y) can be obtained as

p(y) =

∫
Θx

∫
Θw

p(y|θx, θw; σ2,ML
x , σ2,ML

w )p(θ′)dθxdθw. (14)

In practice, the integrals in (13) and (14) are evaluated using nu-

merical integration:

θ̂=
1

NxNw

Nx,Nw∑
i,j=1

θ′
ij

p(y|θi
x, θj

w; σ2,ML
x , σ2,ML

w )p(σ2,ML
x,ij )p(σ2,ML

w,ij )

p(y)
,

(15)

p(y)=
1

NxNw

Nx,Nw∑
i,j=1

p(y|θi
x, θj

w; σ2,ML
x , σ2,ML

w )p(σ2,ML
x,ij )p(σ2,ML

w,ij ),

where θ′
ij = [θi

x, θj
w, σ2,ML

x,ij , σ2,ML
w,ij ] , θi

x and θj
w are the ith

speech codebook and jth noise codebook entries respectively,

σ2,ML
x,ij , σ2,ML

w,ij are the maximum likelihood estimates of the speech

and noise excitation variances corresponding to y, θi
x and θj

w, and

Nx, Nw are the speech and noise codebook sizes. Here we as-

sume that the codebooks model the probability density of the AR

data. For simplicity, we assume that the excitation variances are

uniformly distributed in the interval [0, σ2
max]. The exact value

of σ2
max is irrelevant since, for a uniform distribution, the terms

cancel out in the numerator and denominator of (15). Using the

equivalence of the log-likelihood and the Itakura-Saito distortion,

we can compute

p(y|θx, θw; σ2,ML
x , σ2,ML

w ) = C exp(−dIS(Py, P̂ML
y )). (16)

The constant C also appears in the expression for p(y), and thus

cancels out in the numerator and denominator of (15). The esti-

mate θ̂ can be used to construct a Wiener filter to obtain the en-

hanced speech:

H1(ω) =
σ̂2

x

|Âx(ω)|2 /
( σ̂2

x

|Âx(ω)|2 +
σ̂2

w

|Âw(ω)|2
)
, (17)

where Âx(ω), Âw(ω) are the spectra corresponding to θ̂x, θ̂w re-

spectively.

Since interpolation of LP coefficients can result in unstable fil-

ters, alternate representations are often used [10]. Representations

that are guaranteed to result in stable synthesis filters include line

spectral frequencies (LSF), autocorrelation coefficients (ACR), re-

flection coefficients and log-area ratios (LAR). Among these, it

has been shown that LSFs result in the best performance and thus

we perform the MMSE estimation in the LSF domain.

3.2. MMSE estimation of functions of θx, θw,y

The estimation framework represented by (13) can be used to ob-

tain MMSE estimates of different parametric representations based

on the LP coefficients. For notational convenience, we define the

function

f(θx, θw,y) =
p(y|θx, θw; σ2,ML

x , σ2,ML
w )p(θ′)

p(y)
. (18)

The MMSE estimate of any function g(θx, θw,y) can be obtained

as

ĝ(θx, θw,y) =

∫
Θx

∫
Θw

g(θx, θw,y)f(θx, θw,y)dθxdθw. (19)

g(·) depends on y since σ2,ML
x , σ2,ML

w depend on y. For example,

let g(θx, θw,y) be the Wiener filter defined as H(ω; θx, θw,y) =
σ2,ML

x
|Ax(ω)|2 /(

σ2,ML
x

|Ax(ω)|2 +
σ2,ML

w
|Aw(ω)|2 ), where σ2,ML

x , σ2,ML
w are the

ML estimates of the speech and noise excitation variances given

θx, θw, and y obtained according to (5) and Ax(ω), Aw(ω) are

the spectra of the speech and noise LP coefficients θx, θw. The

MMSE estimate H2(ω) of the Wiener filter is obtained as:

H2(ω) =

∫
Θx

∫
Θw

H(ω; θx, θw,y)f(θx, θw,y)dθxdθw. (20)

We note that the enhanced speech obtained by filtering y with

the filter H2(ω) is the MMSE estimate of the clean waveform,

E{X|y}, where X is the random variable corresponding to clean

speech. This can be seen if we write

E{X|y} =

∫
Θ

p(θ|y)E{X|y, θ}dθ (21)

=

∫
Θx

∫
Θw

f(θx, θw,y)E{X|y, θx, θw; σ2,ML
x , σ2,ML

w }dθxdθw.

For Gaussian AR models, E{X|y, θx, θw; σ2,ML
x , σ2,ML

w }
can be equivalently evaluated in the frequency domain as

H(ω; θx, θw,y)Y(ω), where Y(ω) is the Fourier transform of y.

If we are interested in directly obtaining speech or noise spec-

tra (e.g., as a noise estimation scheme), their MMSE estimates are

given by

P̂mmse
x (ω) =

∫
Θx

∫
Θw

σ2,ML
x

|Ax(ω)|2 f(θx, θw,y)dθxdθw (22)

P̂mmse
w (ω) =

∫
Θx

∫
Θw

σ2,ML
w

|Aw(ω)|2 f(θx, θw,y)dθxdθw, (23)

where σ2,ML
x is the ML estimate of the speech excitation variance

given θx, θw and y. A corresponding Wiener filter can be written

as

H3(ω) =
P̂mmse

x (ω)

P̂mmse
x (ω) + P̂mmse

w (ω)
. (24)
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4. EXPERIMENTS

In this section, we describe the experiments performed to evalu-

ate the performance of the MMSE estimation scheme. The test

set comprised of ten speech utterances, five male and five female,

from the TIMIT database, resampled at 8 kHz. A 10-bit speech

codebook of dimension 10 was trained using 10 minutes of speech

from the TIMIT database with the generalized Lloyd algorithm

(GLA) [11]. The test utterances were not included in the training.

A frame length of 240 samples was used with 50% overlap be-

tween adjacent frames. The frames were windowed using a Hann

window. The noise types considered were highway noise (obtained

by recording noise on a freeway as perceived by a pedestrian stand-

ing at a fixed point), siren noise (a two-tone siren recorded inside

an emergency vehicle), speech babble noise (from Noisex-92) and

white Gaussian noise. The noise codebooks were trained using the

GLA with two minutes of training data. The noise samples used

in the training and testing were different. We used the classifier

described in [7] to select a particular noise codebook for a given

input frame.

Tables 1 and 2 show the segmental signal-to-noise ratio

(SSNR) and spectral distortion (SD) values for the noisy input

and the enhanced speech obtained using the HMM method [2],

the ML approach [7] and the three Wiener filters obtained with

the Bayesian approach according to equations (17), (20) and (24)

respectively. It can be seen that the Wiener filter (20) which is

obtained as a weighted sum of the Wiener filters corresponding

to each pair of speech and noise codebook vectors provides the

best performance in terms of both SSNR and SD. All the Wiener

filters obtained using the Bayesian approach perform better than

those obtained using the HMM method and the ML approach. For

the two-tone siren noise, the Bayesian approach performs slightly

worse than the ML approach. The reason for this is that the siren at

any instant is in one of two disjoint states. A weighted sum of these

disjoint states thus performs worse than the best state alone (as in

the ML approach). In general, the Bayesian MMSE approach pro-

vides superior performance.

Noise Noisy HMM ML H1 H2 H3

Highway 1.9 5.9 7.2 8.6 8.5 8.4

White 0.7 6.1 6.1 7.2 7.6 7.5

Babble 1.3 4.0 5.2 6.3 6.0 5.9

Siren 0.7 6.8 11.1 10.1 10.2 10.2

Table 1. SSNR values (in dB) averaged over ten utterances at 10 dB

input SNR for the HMM based method, the ML estimator and the proposed

MMSE estimators.

Noise Noisy HMM ML H1 H2 H3

Highway 3.3 3.0 2.8 2.9 2.5 2.5

White 4.6 3.6 3.8 4.7 3.5 3.6

Babble 3.2 3.1 3.1 3.2 2.7 2.8

Siren 4.7 3.4 2.2 2.8 2.7 2.7

Table 2. SD values (in dB) averaged over ten utterances at 10 dB in-

put SNR for the HMM based method, the ML estimator and the proposed

MMSE estimators.

5. CONCLUSIONS

We have presented an MMSE approach for the estimation of the

short-term predictor parameters of speech and noise using a-priori

information. A distinguishing feature of the proposed technique

is that unlike current MMSE techniques, the excitation variances

of the speech and noise AR models are computed on a frame-by-

frame basis resulting in good performance in nonstationary noise

environments. We have also presented MMSE estimation of differ-

ent LP based parametric representations of the spectrum. In line

with intuition, MMSE estimation of the clean waveform, and of

the speech and noise spectra, results in better performance than in-

dividually obtaining the MMSE estimates of the STP parameters

as seen from the performance of H1, H2 and H3. Experimental

results show that the proposed MMSE estimation scheme provides

superior performance compared to existing methods.
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