
FAST ESTIMATION OF A PRECISE DEREVERBERATION FILTER
BASED ON SPEECH HARMONICITY

Keisuke Kinoshita Tomohiro Nakatani Masato Miyoshi

NTT Communication Science Laboratories, NTT Corporation
{kinoshita,nak,miyo}@cslab.kecl.ntt.co.jp

ABSTRACT

A speech signal captured by a distant microphone is generally
smeared by reverberation. This severely degrades both the speech
intelligibility and Automatic Speech Recognition (ASR) perfor-
mance. We have already proposed a novel dereverberation tech-
nique named “Harmonicity based dEReverBeration (HERB)”, which
utilizes essential properties of speech, harmonics, and estimates an
inverse filter for an unknown impulse response. If a large amount
of acoustically stable training data is available, HERB is able to
estimate an accurate inverse filter even in severely reverberant en-
vironments. In general, however, a dereverberation algorithm has
to work with small amounts of training data, because the acoustic
property of a real world environment changes according to vari-
ous factors such as the speaker’s position and room temperature.
In this paper, we propose a new dereverberation scheme based on
HERB, aiming primarily at reducing the amount of training data
needed to estimate an inverse filter. We show experimentally that
our new dereverberation scheme successfully achieves high qual-
ity dereverberation with much smaller amounts of training data,
and is very effective at improving both audible quality and ASR
performance, even in unknown severely reverberant environments.

1. INTRODUCTION

The quality of a speech signal captured by a distant microphone
is generally degraded by surrounding acoustic interference such as
reverberation and environmental noise. A recorded speech signal
can be modeled as

x(n) = sT (n)h(n) + b(n) (1)

where s(n) refers to clean speech, h(n) = [h(0, n) . . . h(M −
1, n)]T to an M-tap room impulse response, and b(n) to environ-
mental additive noise. Among these interference, reverberation is
known to severely degrade both Automatic Speech Recognition
(ASR) performance and speech intelligibility. In particular, in a
reverberant environment with a reverberation time (RT) of more
than 0.5 seconds, the ASR performance cannot be improved even
with an acoustic model trained with a matched reverberation con-
dition [1].

Considerable research has been undertaken to find a way of
dealing with additive noise. For example, Spectral Subtraction
(SS) can greatly reduce the effect of additive noise and leads to
a sufficient improvement in ASR performance and speech intel-
ligibility [2]. In an ASR system, a Parallel Model Combination
(PMC) [3] can also be utilized as a good solution to additive noise.

Although noise reduction techniques have been developed, no
effective dereverberation technique has yet been proposed despite
considerable effort over many years. The most widely used dere-
verberation remains microphone array [4]. It first estimates the di-
rection of arrivals (DOAs), and steers the “nulls” of a microphone
array (null beam-forming) to best suppress the reflections. Since
the number of reflections is much greater than the nulls formed
by the microphone array, it only works in moderately reverberant
environments. Other major approaches attempting to estimate the

inverse filter for an unknown impulse response are based on blind
equalization methods, such as Independent Component Analysis
(ICA) [5]. This method works effectively if the signals are sta-
tistically independent and identically distributed non-Gaussian se-
quences. However, it cannot appropriately handle speech signals
because they have inherent properties, such as periodicity and for-
mants, making the sequence statistically dependent. Another ap-
proach that focuses on audible quality has been proposed by Yag-
nanarayana [6]. Improvement was achieved by attenuating the rel-
ative amplitude of LPC residuals where the speech to reverberation
ratio is smaller. Even though this method might help to improve
speech intelligibility, it does not improve ASR performance be-
cause it makes no changes to the spectral features that are essential
for ASR.

To achieve an improvement in both ASR performance and
speech intelligibility, we have proposed a novel dereverberation
methodology named “Harmonicity based dEReverBeration (HERB)”
[7, 8]. It utilizes essential properties of speech, harmonics, and es-
timates an inverse filter for an unknown impulse response. HERB
is very effective at improving both speech intelligibility and ASR
performance even under unknown severely reverberant environ-
ments (e.g. Reverberation Time:RT=1.0s, 0.5s) [9], if a large amount
of acoustically stable training data is available (e.g. more than 60
minutes in [7]). In general, however, the real world acoustic envi-
ronment changes according to various factors such as the speaker’s
position and room temperature, and never remains stable for a long
time. Therefore, in practice, the conventional HERB estimation
scheme cannot be applied directly to a real world environment.

In this paper, we would like to propose a new dereverberation
scheme named “Fast HERB” that utilizes the the framework of
HERB. The primary aim is to reduce the amount of training data
and thus enable the fast estimation of the inverse filter. In sec-
tions 2 and 3, we describe the problem of HERB in more detail
and derive a way of reducing the amount of training data without
degrading its dereverberation performance. In section 5, we report
an experimental result obtained with Fast HERB and using much
smaller amount of training data.

2. PROBLEM OF HARMONICITY BASED
DEREVERBERATION

HERB estimates the inverse filter without any knowledge of the in-
put signal, by regarding the harmonic structure within reverberant
speech as the voiced portion of a direct sound. The inverse filter
derived with this scheme is proven to approximate that of a room
impulse response precisely, if there is sufficient training data. We
begin by describing the HERB dereverberation scheme in more
detail, and then address the problem it poses.

2.1. Harmonicity based dereverberation

In HERB, the dereverberation filter WH is calculated as

WH(f) = E
jH{X(τ, f)}

X(τ, f)

ff
, (2)
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where X(τ, f) is a discrete short-time Fourier transformation of
an observed reverberant signal x(n) with a center frequency f at
a time frame τ . H{·} is a function that extracts harmonic compo-
nents from X . An adaptive comb filter is used to implement this
function in HERB. E{·} is a function that calculates the average
value at each f over time frames.

To prove that WH can precisely approximate the true inverse
filter WT , we first introduce the model of speech signals and rever-
beration. Let S be the clean speech, Sh be its harmonic component
(i.e. harmonics within voiced vowels, voiced consonants) and Sn

its non-harmonic component (i.e. noisy components within un-
voiced vowels, consonants). Then, the clean speech is modeled as

S(τ, f) = Sh(τ, f) + Sn(τ, f). (3)

If the speech is reverberated with a transfer function H , which can
be decomposed into reverberation component R and direct com-
ponent D, reverberant speech X is given by

X(τ, f) = H(f)S(τ, f),

= D(f)S(τ, f) + R(f)S(τ, f), (4)

where DS is the direct signal component of S. Using this notation,
we define that the true inverse filter WT can be modeled as

WT (f) = E
j

D(f)S(τ, f)

X(τ, f)

ff
, (5)

=
D(f)

H(f)
. (6)

Now, by assuming that the output of harmonic filter H{X} is an
approximation of harmonic components of the direct signal as1,

H{X(τ, f)} � D(f)Sh(τ, f), (7)

the property of WH can be analyzed as follows. Substituting eq. (7)
for eq. (2) and using the Taylor expansion, WH can be rewritten
as

WH(f) � D(f)

H(f)
E

j
Sh(τ, f)

Sh(τ, f) + Sn(τ, f)

ff
, (8)

= WT (f){Ph(f) + C(f)}. (9)

Here Ph(f) is a probability that Sh(τ, f) has a larger energy than
Sn(τ, f) at each f ,

C(f) = Ph(f)C1(f) + (1 − Ph(f))C2(f), (10)

C1(f) =

∞X
k=1

(−1)kE|Q(τ,f)|<1{Q(τ, f)k} (11)

C2(f) = −
∞X

k=1

(−1)kE|Q(τ,f)|>1{Q(τ, f)−k}, (12)

Q(τ, f) =
Sn(τ, f)

Sh(τ, f)
, (13)

and Ef(Q){Qk} is an average of Qk for Q that satisfies f(Q).
With speech signals, � Q is expected to be uniformly distributed
within [−π, π) and independent of |Q|. Therefore, the following
equation is expected to hold if a sufficiently large number of time
frames are available for calculating the average value.

E|Q|<1{Qk} = E|Q|>1{Q−k} = 0 for k > 0. (14)

Consequently, WH is shown to have the following property.
WH(f) � Ph(f)WT (f). (15)

Equation (15) indicates that the dereverberation effect of WH is
approximately the same as that of WT , although it has an addi-
tional effect caused by Ph. Note that, Ph is a term that manip-
ulates only the gain of the filter at each f because it takes a real
value between 0.0 and 1.0.

1A physical interpretation of this assumption is discussed in [7]

Fig. 1. Waveforms of speech signals dereverberated by WH (top)
and WFH (bottom) when both inverse filters were estimated using
one-minute training data. (RT=1s)

2.2. Problem

Equation (14), however, does not hold if a sufficiently large num-
ber of time frames are not available. In that case, C(f) in eq. (9)
cannot be disregarded, and it generates an additive noise compo-
nent when applied to an observed signal. Therefore, HERB re-
quires a large number of time frames to achieve high quality dere-
verberation.

The top of Fig. 1 shows the waveform of a speech signal dere-
verberated by WH , which was derived using small amount of ob-
served signal. We can see that the additive noise component gener-
ated by WH appears as random noise in the signal. This can easily
be confirmed by multiplying eq. (9) with an observed signal X to
obtain the dereverberated signal Y as follows.

Y (τ, f) = WH(f)X(τ, f),

= Ph(f)D(f)S(τ, f) + C(f)D(f)S(τ, f). (16)

The second term on the right hand side of eq. (16) can be consid-
ered the additive noise component that remains after dereverbera-
tion. According to eqs. (11) and (12), C(f) is the weighted sum of
sub-functions Q and its powers over time frames. The value Q at
each time frame can be considered a function that transforms a har-
monic component Sh into a non-harmonic component Sn. Since
Sh and Sn have no fixed linear mapping from one to the other,
Q is expected to be a random function. Therefore, it transforms a
speech signal into random noise, as can be seen in Fig. 1. A sim-
ilar discussion is also given for Q−1. As a consequence, C(f) is
expected to be a function that generates random noise.

3. SOLUTION

Here we describe our solution to the problem presented in the pre-
vious section. First, we apply a noise reduction algorithm denoted
as functionF{·} to both sides of eq. (16), with the aim of eliminat-
ing only the additive noise term C(f)D(f)S(τ, f). Care should
be taken to implement function F{·}. As shown by eq. (16), the
noise included in Y (τ, f) changes its amplitude according to the
gain of input signal S(τ, f). Therefore the noise reduction algo-
rithm should be able to track non-stationary noise. In addition,
with blind dereverberation, the Speech to Noise Ratio (SNR) in
Y (τ, f) is totally unpredictable, and potentially very low. There-
fore the performance of a traditional speech activity detector can-
not be guaranteed. In other words, it is appropriate to use an algo-
rithm that has a robust speech activity detector, or an algorithm that
does not require one such as a Kalman filter [10]. For this purpose,
we introduce a previously proposed noise reduction method based
on minimum statistics [11]. This method is capable of adaptively
estimating the background noise level without any distinction be-
tween speech activity and speech pause. Using an algorithm that
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Fig. 2. Block diagram of Fast HERB

meets the requirements, we were able to obtain an approximation
of a direct signal from a HERB dereverberated signal as

Ŷ (τ, f) = F{WH(f)X(τ, f)}, (17)
= F{Ph(f)D(f)S(τ, f) + C(f)D(f)S(τ, f)},

(18)
� Ph(f)D(f)S(τ, f). (19)

However, another problem arises here. Although it might be pos-
sible to consider Ŷ as resultant dereverberated speech, Ŷ is very
likely to contain some deviations from the direct signal such as
a residual noise component, or an estimation errors. To solve this
problem, we consider Ŷ to be a reference signal, rather than a final
dereverberated signal, thus allowing us to re-estimate a more accu-
rate inverse filter. Estimation errors in the inverse filter caused by
Ŷ can be greatly reduced by averaging over several frames. Now
a more accurate inverse filter can be estimated as

WFH(f) = E
jF{Y (τ, f)}

X(τ, f)

ff
, (20)

� E
j

Ph(f)D(f)S(τ, f)

X(τ, f)

ff
, (21)

= Ph(f)WT (f). (22)

Finally, we were able to obtain an accurate estimation of the true
inverse filter WT using an even smaller amount of training data.
This entire dereverberation procedure is referred to as “Fast HERB”.
The bottom of Fig. (1) shows the waveform of a speech signal
dereverberated by WFH .

4. IMPLEMENTATION OF NEW METHOD

A block diagram of Fast HERB is shown in Fig. 2. First, input
reverberant speech X is divided into 5.5 second frames with rect-
angular windows each overlapping by 75%. The value τ in Fig. 2
denotes a time frame index. The window length and its overlap-
ping rate were chosen arbitrarily. In each frame, harmonic compo-
nents within X(τ, f) are extracted using harmonic filtering H{·}
as described in [7, 8]. Based on the extracted harmonic compo-
nents H{X(τ, f)} and X(τ, f), we calculate the initial estima-
tion of the dereverberation filter as H{X(τ,f)}

X(τ,f)
in each time frame.

By averaging the initial estimated value over several frames, we
obtain a first dereverberation filter WH(f). Proceeding to the next
step in Fig. 2, WH(f) is applied to X(τ, f) to obtain Y (τ, f).

We use an overlap-add technique to synthesize Y . Since the resul-
tant dereverberated speech Y (τ, f) has an additive noise as shown
in the previous section, a noise reduction algorithm F{·} is em-
ployed to obtain an estimation of the direct signal Ŷ (τ, f) as in
eq. (19). The noise reduction algorithm used here is a spectral
subtraction based on minimum statistics proposed in [11], which
meets the requirements described in section 3. After the noise
reduction, a more accurate dereverberation filter is calculated as
Ŷ (τ,f)
X(τ,f)

. Then, WFH(τ, f)s are averaged over the frames, and
converted to WFH(f). Finally, WFH(f) is applied to X(τ, f)
to obtain the final dereverberated speech Z(τ, f).

5. EXPERIMENT

In this section, we evaluate the effectiveness of Fast HERB in
terms of audible quality and ASR performance, compared with
conventional HERB.

5.1. Experimental conditions

Five spoken Japanese sentences were obtained from ATR data set
B for each gender (male:MHT, female:FKN), as the training data
for Fast HERB. The signals were sampled at 12kHz and quan-
tized with 16-bit resolution. To simulate a reverberant environ-
ment, each sentence was convoluted with each of 4 impulse re-
sponses (RT: 0.1, 0.2, 0.5, 1.0 sec.) measured in advance. The
total duration of the 5 reverberant sentences was about 1 minute.
Dereverberation was performed on 4 impulse responses × 2 gen-
ders.

To compare the effectiveness of Fast HERB with that of con-
ventional HERB, we performed HERB dereverberation for two
different cases (case 1: 60-minute training data, case 2: 1-minute
training data). The HERB dereverberation procedure is summa-
rized in [9]. We also used ATR data set B as the filter training
data for HERB; 503 sentences for each gender for case 1, 5 sen-
tences for each gender for case 2. The total duration of the 503
reverberant sentences was about 56 minutes.

5.2. Subjective evaluation of audible quality

We informally evaluated the audible quality of the dereverberated
speech processed by Fast HERB. Even though the training data for
Fast HERB was only a minute long, all of 4 subjects judged the
speech quality and intelligibility to be greatly improved. Speech
samples are available at [12].

I - 1075

➡ ➡



Fig. 3. The result of ASR experiment

5.3. Improvement of ASR performance

We then investigated the effectiveness of Fast HERB as a pre-
processing algorithm for ASR. The ASR performance was eval-
uated in terms of speaker dependent word accuracy. In the acous-
tic model, we used the following parameters : 12 order MFCCs,
12 order delta MFCCs, 3 state HMMs, and 4 mixture Gaussian
distributions. The language model that was used was trained on
Japanese newspaper articles written over a ten-year period.

The acoustic model was trained on speech signals observed
under various reverberant environments excluding the recognition
target environment. We call this “multicondition training”. For ex-
ample, an acoustic model trained on RT 0.1s, 0.2s and 0.5s dere-
verberated speech was used to recognize RT 1.0s dereverberated
speech. The model trained on reverberant (dereverberated) speech
was used to recognize reverberant (dereverberated) speech. Cep-
stral Mean Normalization [13] was used for all the recognition
tasks. This model training methodology is summarized in [9]

As a result of the experiments, in all reverberant environments,
the recognition rate for the Fast HERB dereverberated speech was
comparable to that of clean speech.

Figure 3 shows the word accuracy of the baseline performance,
no preprocessing case, HERB using 60 min. training data, HERB
using 1 min. training data and Fast HERB using 1 min. training
data, under each reverberant environment, for each gender. The
baseline in Fig. 3 represents the word accuracy for clean speech
recognized with the clean acoustic model. If we do not employ a
dereverberation algorithm as a preprocessing, the word accuracy
decreases especially in a severely reverberant environment. If a
large amount of training data is available, HERB can estimate an
accurate inverse filter and bring the word accuracy close to the
baseline performance. In contrast, when there is only 1 min. of
training data, the HERB dereverberated speech score is lower than
without preprocessing, especially in a moderately reverberant en-
vironment. It should be noted that, with Fast HERB, the word ac-
curacy recovered to approximately the level obtained with HERB
using 60 min. training data.

6. CONCLUSION

A speech signal captured by a distant microphone is generally
smeared by reverberation, which severely degrades both speech in-
telligibility and the Automatic Speech Recognition (ASR) perfor-
mance. In this paper, we proposed a new dereverberation scheme,
named “Fast HERB”. When the amount of training data for the
estimation of an inverse filter is insufficient, the dereverberated
speech processed by conventional HERB was analyzed and found
to contain direct sound and additive random noise. To deal with
this problem, Fast HERB employed a noise reduction algorithm,
and enabled the fast estimation of a precise inverse filter. Our
experiments showed that Fast HERB successfully achieved high

quality dereverberation with a much smaller amount of training
data than conventional HERB, and was very effective at improv-
ing ASR performance even under unknown severely reverberant
environments. In addition, the audible quality of the dereverber-
ated speech was found to be fairly good.
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