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ABSTRACT
This paper addresses the blind dereverberation problem of
single-input multiple-output acoustic systems. Most ap-
proaches require an exact knowledge of the order of the
room transfer functions. In this paper, we propose an equal-
ization algorithm that is less sensitive to the order of the esti-
mated transfer functions. First, the transfer functions are es-
timated using an overestimated order, and the inverse filter
set for this estimated transfer functions is calculated. Since
the estimated transfer functions have a common part, the
signal processed by the inverse filter set contains distortion.
Then, we compensate for this distortion using a common
polynomial extraction technique. This algorithm enables a
reverberated speech signal to be dereverberated as long as
the channel is overestimated. Simulation results show that
the proposed method is robust even when the order is highly
overestimated.

1. INTRODUCTION

The distortion of speech signals by reverberation in a room
is a crucial problem in many applications. For example,
reverberation severely changes signal characteristics, thus
degrading the recognition performance in current automatic
speech recognition (ASR) systems. Considerable effort has
been devoted to the blind dereverberation problem, but no
adequate solution has yet been established.

A class of techniques has been proposed based on the
assumption that the source signal has i.i.d. characteristics
[1][2]. A major problem with these techniques is that the
dereverberation process causes excessive whitening of the
speech signals. One way to cope with this problem is to
design a good inverse filter for the transfer function be-
tween the source and receivers directly. The harmonic struc-
ture of speech has been successfully used to obtain a pre-
cise estimate of the inverse filter from reverberant speech
[3][4]. This technique works well even for long reverbera-
tion times. However, since this technique is highly depen-
dent on source signal characteristics, the technique does not
seem to be applicable to a wide variety of source signals.

Another way is to estimate transfer functions directly re-
gardless of the kind of source signal, and design the inverse
filter using these transfer functions. Many techniques for
blind identification/equalization have already been devel-
oped, including the subspace (SS) method, the least squares
(LS) subchannel matching technique, and the linear predic-
tion (LP) method [5]. However, most of the techniques re-
quire an exact knowledge of the channel order. In practical
situations, methods that are insensitive to the transfer func-
tion order are desirable.

In this paper, we propose a blind equalization algorithm
that requires no precise information about the channel order.
As long as the channel is overestimated, dereverberation is
achieved. The following section reviews the conventional
blind dereverberation method based on subchannel match-
ing, and clarifies problems. Section 3 describes our pro-
posed method. Section 4 describes a simulation to show the
effectiveness of the proposed method. Section 5 summa-
rizes the paper.

2. BLIND DEREVERBERATION

2.1. Conventional subchannel matching

We focus on the single-source two-microphone acoustic sys-
tem shown in Fig. 1. We assumed that room transfer func-
tions h1(z), h2(z) have no common zeros, and are repre-
sented as j-th order polynomials:

hi(z) = hi,0 + hi,1z
−1 + . . . + hi,jz

−j , i = 1, 2.

A source signal is represented as s(n), and signals received
by the two microphones are x1(n), x2(n), respectively. The
objective of blind deconvolution is to recover the source sig-
nal based only on the received signals.

As shown in Fig. 1, signals x1(n) and x2(n) pass through
the filters ĥ1(z), ĥ2(z) with order k, and one filtered signal
is subtracted from the other to obtain error signal e(n).

e(n) = x1(n)ĥ2(z) − x2(n)ĥ1(z)

= s(n){h1(z)ĥ2(z) − h2(z)ĥ1(z)} (1)

I - 10690-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



Fig. 1. Acoustic system and estimation of transfer functions
in subchannel matching.

If k = j and e(n) = 0 for all n, ĥ1(z) and ĥ2(z) are identi-
fied up to an arbitrary scalar, i.e.,

ĥ1(z) = αh1(z), ĥ2(z) = αh2(z). (2)

In fact, the estimates are obtained by minimizing the mean
square value of e(n). The solution is obtained through the
eigenvalue decomposition of the autocorrelation matrix of
the observed signals. The estimate of the transfer functions
is the eigenvector that corresponds to the minimum eigen-
value of the autocorrelation matrix [6][7].

When the transfer function estimates are obtained, an
exact inverse filter set can be calculated using multi-channel
inverse filter theory [8] � When inverse filters are expressed
as w1(z), w2(z), these filters satisfy

ĥ1(z)w1(z) + ĥ2(z)w2(z) = 1,

h1(z)w1(z) + h2(z)w2(z) =
1
α

. (3)

This relation demonstrates that a perfect dereverberation is
achieved.

2.2. Problems

If the order of the transfer function is overestimated, then
ĥ1(z) and ĥ2(z) become

ĥ1(z) = c(z)h1(z), ĥ2(z) = c(z)h2(z) (4)

c(z) = c0 + c1z
−1 + . . . + cmz−m.

where polynomial c(z) is common to the two transfer func-
tion estimates. Let us consider inverse filtering using these
transfer function estimates.

ĥ1(z)w1(z) + ĥ2(z)w2(z) = 1, (5)

c(z){h1(z)w1(z) + h2(z)w2(z)} = 1.

Here, filters w1(z) and w2(z) no longer achieve inverse fil-
tering the actual transfer functions, and naturally, the dere-
verberation fails. The transfer function order could be ob-
tained if the dimension of the nullspace in the autocorrela-
tion matrix of the observed signals is precisely calculated
[7][9], i.e., by counting the number of the smallest eigen-
values. Another way to find the optimum order is to use a

proper cost function [10][11]. Different from these meth-
ods, we propose a method where exact order estimation is
not required as long as the order is overestimated.

3. PROPOSED ALGORITHM

3.1. Effect of overestimation

Inverse filters are calculated using overestimated transfer
functions, as shown in Eq. (5). These inverse filters satisfy
the following equation.

h1(z)w1(z) + h2(z)w2(z) ∝ 1
cmin(z)

, (6)

where cmin(z) is a minimum phase polynomial where non-
minimum phase zeros of c(z) are reflected inside the unit
circle on the z-plane (Proof is shown in Appendix). Here,
1/cmin(z) can be expressed as 1/cmin(z) = 1− (d1z

−1 +
. . .+dm′z−m′

). Equation (6) means that the dereverberated
signal obtained through w1(z) and w2(z) sufferred from ex-
tra degradation, in other words, it was colored by cmin(z).
To remove this distortion, cmin(z) is extracted from the
transfer function estimates based on multi-channel linear
prediction.

3.2. Common polynomial extraction

Applying the two-channel linear prediction scheme to the
transfer function estimates ĥ1(z) and ĥ2(z), 1/cmin(z) can
be extracted [12] as a characteristic polynomial of matrix Q
as shown below.

Q = lim
δ→0

(ĤT Ĥ + δ2I)−1ĤT SĤ (7)

= lim
δ→0

(HT CT CH + δ2I)−1HT CT SCH

where Ĥ is a convolution matrix similarly defined as H,

H = [H1,H2] ,Hi=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hi,0 0 . . . 0

hi,1 hi,0
. . .

...
...

. . .
. . .

hi,j hi,0

0 hi,j hi,1

...
. . .

...
0 . . . 0 hi,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i = 1, 2,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 0 . . . 0

c1 c0
. . .

...
...

. . .
. . .

cm c0

0 cm c1

...
. . .

...
0 . . . 0 cm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,S=

⎛
⎜⎜⎜⎜⎝

0 1 . . . 0
... 0

. . .
...

. . . 1
0 . . . . . . 0

⎞
⎟⎟⎟⎟⎠ .
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According to the definition of the Moore-Penrose general-
ized inverse, matrix Q can be further rewritten as,

Q = (CH)+SCH

= HT (HHT )−1(CT C)−1CT SCH, (8)

where + denotes the Moore-Penrose generalized inverse [13].
The characteristic polynomial of matrix Q, fc(Q), is ex-
pressed as,

fc(Q) = fc(HT (HHT )−1(CT C)−1CT SCH)
= fc(HHT (HHT )−1(CT C)−1CT SC)
= fc((CT C)−1CT SC)

= fc(

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d1 1 0 . . . 0

d2 0 1
...

...
. . .

. . . 0

dm′−1

... 0 1
dm′ 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

)

= 1 − (d1z
−1 + . . . + dm′z−m′

). (9)

That is, 1/cmin(z) can be calculated as the characteristic
polynomial of matrix Q.

By applying the filter cmin(z) obtained by the above
procedure to the deconvolved signal, we can compensate for
the distortion described in section 3.1. The configuration of
the proposed method is shown in Fig. 2.

3.3. Algorithm

We can summarize the proposed algorithm as follows:

1. Estimate the transfer functions based on the eigen-
value decomposition of the autocorrelation matrix.

2. Calculate the inverse filters using the transfer function
estimates.

3. Filter the observed signals with the inverse filters.

4. Estimate the common polynomial shown in Eq. (9)
from the transfer function estimates using two-channel
linear prediction.

5. Compensate for the effect of this common polynomial
and recover the input signal.

4. SIMULATIONS

We conducted simulations to test the described method in
the ideal case of a noise free environment. The input signals
were Japanese sentences, taken from ATR’s speech database
[14]. Room transfer functions were simulated using the

Fig. 2. Configuration of proposed method.

image method [15]. The simulated room was designed as
shown in Fig. 3. The room impulse responses were trun-
cated to 300 taps corresponding to a duration of 18.75 ms.
The truncated transfer functions were confirmed to be non-
minimum phase.

The simulation conditions are summarized in Table 1.

Fig. 3. Simulated soundfield.

Table 1. Simulation conditions.

Length of h1(z) and h2(z) 300 taps
Length of ĥ1(z) and ĥ2(z) 300 ∼ 600 taps†

Reflection coefficient 0.8
Duration of speech signals ≈ 5 sec
Sampling frequency 16 kHz
†(Length of c(z) 0 ∼ 300 taps)

We evaluate the performance using the signal to distor-
tion ratio (SDR) as defined below:

SDR = 10 log10

( ∑ |s(n)|2∑ |s(n) − ŝ(n)|2
)

, (10)

where s(n) is the input speech signal and ŝ(n) is the esti-
mated speech signal.

Figure 4 shows the performance when the estimated
length of the transfer functions varied from 300 to 600 taps.
The performance was very good (over 60 dB) when we used
the correct length. Furthermore, the SDR values remained
good even when the length was overestimated by up to 600.
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Fig. 4. Performance as a function of the estimated length
(Solid line: proposed method, dashed line: received signal
x1(n), dash-dotted line: dereverberated signal without can-
celling 1/cmin(z)).

The linear prediction based method successfully compen-
sated for the distortion caused by order mismatch and pro-
vided an average SDR of 30 dB. Note that the proposed
method never use the correct order of h1(z) and h2(z). The
method only uses the order of ĥ1(z) and ĥ2(z).

5. SUMMARY

We proposed a speech dereverberation algorithm robust to
the order overestimation of the room transfer functions. First,
the inverse filters are calculated using the estimates of the
possibly overestimated transfer functions, then the distor-
tion introduced by overestimation is compensated for. Sim-
ulation results show that the proposed method is robust even
when the order is highly overestimated.

As future work, we must consider robustness to noise.
The computer accuracy problem also has to be investigated.
Since increasing the length of the transfer functions leads to
the calculation of larger matrix Q, we have to study accurate
calculation methods of fc(Q) shown in Eq. (9) for large
matrix Q.

6. APPENDIX

Using a matrix form, Eq. (5) can be expressed as,

CHw = [1, 0, . . . , 0]T = J.

Using the Moore-Penrose generalized inverse [13], w can
be calculated as

w = HT (HHT )−1(CT C)−1CT J.

Using this w, the left hand side of Eq. (6) becomes,

Hw = HHT (HHT )−1(CT C)−1CT J

∝ (CT C)−1J

Since (CT C)−1 calculated when c(z) is a minimum phase
polynomial is equivalent to the one when c(z) is a nonmin-
imum phase polynomial. This corresponds to 1/cmin(z).
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