
THE AT&T WATSON SPEECH RECOGNIZER

V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tür, A. Ljolje, S. Parthasarathy,
M. Rahim, G. Riccardi and M. Saraclar

AT&T Labs – Research
180 Park Ave, Florham Park, NJ 07932 USA

{vjg,allauzen,enrico,dtur,alj,sps,mazin,dsp3,murat}@research.att.com

ABSTRACT

This paper describes the AT&T WATSON real-time speech recog-
nizer, the product of several decades of research at AT&T. The rec-
ognizer handles a wide range of vocabulary sizes and is based on
continuous-density hidden Markov models for acoustic modeling
and finite state networks for language modeling. The recognition
network is optimized for efficient search. We identify the algo-
rithms used for high-accuracy, real-time and low-latency recog-
nition. We present results for small and large vocabulary tasks
taken from the AT&T VoiceTone R© service, showing word accu-
racy improvement of about 5% absolute and real-time processing
speed-up by a factor between 2 and 3.

1. INTRODUCTION

Automatic Speech Recognition (ASR) has become an integral part
of the emerging electronic contact market, enabling human-machine
communication through spoken dialog. The success of ASR is at-
tributed to several factors including the availability of large amounts
of human-transcribed data for training, powerfull computers to
support multi-channel and real-time operation, and algorithmic ad-
vances in areas of speech and signal processing leading to more
accurate, efficient and robust modeling.

Although word accuracy has always been the standard mea-
sure used for evaluating speech recognition systems, many other
factors need to be considered to successfully deploy a spoken dia-
log system. Several measures, including accuracy and robustness,
real-time, memory foot-print, latency, barge-in detection and re-
jection of out of vocabulary events, need to be jointly optimized
when deploying large-scale ASR services.

In this paper we describe the WATSON real-time speech rec-
ognizer, the product of several decades of speech research at AT&T.
The recognizer is speaker-independent and uses context-dependent
continuous density hidden Markov models (HMM) for acoustic
modeling and finite-state networks for network optimization and
search. For improved acoustic modeling, WATSON uses task-
specific phoneme sets that are trained with linear discriminative
analysis, vocal tract length normalization, constrained model opti-
mization, maximum mutual information and maximum likelihood
linear regression.

One innovation of the WATSON recognizer is its ability to
support recognition for any vocabulary size. This is achieved by
representing the search space as a weighted finite-state machine
(FSM). The language model (G), rule-based or stochastic, deter-
mines valid word sequences and their probabilities, the lexicon (L)
determines phone sequences for each word and the context FSM
(C) selects the acoustic HMM for each phone. The final network

(CLG) is composed and optimized using very general FSM al-
gorithms such as composition, minimization and weight pushing.
By substituting the G and recomposing the network, WATSON
can support a range of tasks from small to large vocabulary, up to
several millions of words. We will present results on two sets of
data taken from the AT&T VoiceTone R© service, a small vocabu-
lary task (alpha-digits), and a large vocabulary task acquired from
a natural language dialog application.

2. THE WATSON SPEECH RECOGNIZER

The WATSON environment includes a core recognizer, tools and
libraries of reusable grammars (for dates, times, etc.). The core
recognizer is a Viterbi decoder that can output lattices and confi-
dence scores. The tools are for feature extraction, acoustic and lan-
guage modeling, pronunciation modeling and network optimiza-
tion. The environment enables users to create or customize real-
time, multi-lingual, speech and speaker recognition applications.

2.1. Software Architecture

The core recognizer is organized around a Controller (CTL) that
has access to a Data Store (DS) and an Execution Context (EC).
The DS mediates access to all data: language models, acoustic
models, word dictionaries, speaker profiles, and includes a results
history. The data itself can reside in memory, in local files or in a
separate database. The core EC represents all sections of the algo-
rithm pipeline: feature extraction, feature normalization, speech
silence detection, endpointing, bargein detection, decoding and
scoring.

DataS ExeC

LanguageModels Frontend
↖ ↗

AcousticModels ←− CTL −→ Endpointing
↙ ↘

Results Decoding
The CTL guides the acoustic signal and control parameters

through the EC pipeline in real time. It divides the task into small
processing steps during which the algorithms consume and pro-
duce chunks of data, all of which are attached to events in an event
queue. The challenge lies in defining a complete set of well defined
events. The CTL’s role is to manage the event queue efficiently. It
does this by calling on those algorithms that have registered inter-
est in particular events and by monitoring their response times.

The CTL, DS and EC modules, and the event based process-
ing, make it easier to extend the core configuration to handle tasks
beyond simple recognition. One important result is that the CTL

I - 10330-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

does not grow in complexity. Adding a major extension may re-
quire refining the event model and enhancing existing modules but
most of the new complexity is confined to the new module.

For example we handle Speaker Verification (SV), by adding
an SV module to the EC. Like any other EC module it registers
itself with the CTL and expresses interest in certain events, in this
case this includes phrase-result. When phrase-result occurs, the
CTL passes control to the SV module, along with access to the
event queue and the DS. Recent utterances are accessible through
the DS and so are individual speaker models, so SV can proceed.
The SV disposition is added to the current result and control re-
turns to the CTL. The result is eventually serialized and forwarded
to the client, as before. The same paradigm is applied for support-
ing the real-time implementation of the Vocal Tract Length Nor-
malization (VTLN) algorithm. Besides changing the front-end to
generate wrapped features and adding a new VTLN module, the
CTL itself remains independent of VTLN.

2.2. Acoustic Feature Extraction

WATSON acoustic features are derived from the mel-frequency
cepstrum of audio frames. The frames are generated every 10
ms and cover a 20 ms time window. A vector of 21 cepstral
coefficients and energy is computed for every frame, and mean-
normalization is applied in real-time (with a 300 ms lookahead).
To capture the speech signal dynamics, 11 consecutive cepstrum
vectors are concatenated into a super-vector and then projected
onto a 60 dimensional feature space. The projection combines a
discriminative feature extraction technique known as Heteroscedas-
tic Discriminant Analysis (HDA) [1] and a decorrelating linear
transformation meant to ensure minimum loss of likelihood due
to the diagonal covariance Gaussian mixture distributions of our
HMM states.

2.3. Acoustic Modeling

The WATSON recognizer incorporates many recent advances in
acoustic modeling. Parameter tying is available for mixture com-
ponents, mixtures (states), and by careful design of the dictionaries
even for HMMs and words. Any configuration of those levels that
can be represented by a finite state network is supported [2].

In most of our applications we use Gaussian mixture tied-state
three/four-state left-to-right HMM-based acoustic models. When
models are needed to simultaneously support several tasks, an task-
specific phoneme sets are used which provide task dependent per-
formance, even if different tasks appear in the same utterance. An
example would be a speaker who identifies him/her-self (name
recognition), provides an account number (alphadigit recognition)
embedded within conversational language (general English) [3].
Each part of the utterance is handled by a different part of the
model, with its own phoneme set, with full context dependency
across the task boundaries. Additionally, we use tree-based con-
text clustering for general English while at the same time, and in
the same model, we use head-body-tail models for digits.

All the acoustic models are initially trained using the Maxi-
mum Likelihood Estimation (MLE) criterion, followed by Maxi-
mum Mutual Information Estimation (MMIE) criterion.

In addition, WATSON provides low latency real-time Vocal
Tract Length Normalization (VTLN) [4]. This algorithm is effec-
tive even on short utterances from a given speaker.

2.4. Acoustic Likelihood Calculation

For likelihood calculations we use parallel evaluation when pos-
sible. With Intel processors this means using SSE instructions to
schedule up to 4 parallel floating point operations. We observe the
expected reduction in likelihood calculation cycles.

Precalculating acoustic likelihoods for several frames at each
active HMM state reduces the likelihood calculation load by an-
other 10% to 40% [5].

Even after applying this look-ahead, the fraction of decoding
time devoted to the state likelihoods is significant, ranging from
45% to 65%, depending on the task. Gaussian Selection (GS) [6]
aims to limit the number of computed Gaussian exponents, by ig-
noring the Gaussians yielding negligible contributions to the state
likelihoods. Our recent GS implementation uses non-overlapping
shortlists of Gaussian neighbors, similar to [7]. During decoding,
likelihood computation of an input vector is enabled only for a
small fraction (e.g. 32 out of 256) of Gaussian shortlists nearest to
the vector. States with no Gaussians in the selected shortlists, and
states of “silence” models, are specially handled. The total compu-
tation speed-up provided by GS, after state lookahead, varies from
24% to 30%, measured on 6 tasks from connected alpha-digits to
very large vocabulary continuous speech recognition.

2.5. Language Modeling

WATSON supports any language model that can be represented as
a weighted finite state machine (FSM), and has tools to compile
rule-based and stochastic grammars into FSMs.

Rule based grammars are used for lower complexity tasks and
tasks for which no training data is available. Examples of these are
dates, times, confirmations and account numbers.

Corpus based stochastic language models are used for higher
complexity tasks, such as spoken dialog applications where users
are prompted to speak naturally. These models can be imple-
mented as weighted FSMs and in particular as Variable Nonde-
terministic Stochastic Automata (VNSA). A VNSA is a weighted
FSM that can parse an arbitrary sequence of words from a given
vocabulary. In its simplest implementation a state of a VNSA rep-
resents the history of a word sequence and the VNSA itself is a
compact representation of the probability distribution over all pos-
sible word sequences. By appropriately defining the state space to
incorporate lexical (word) and extra lexical information (e.g. part
of speech tags), the VNSA formalism can generate a wide class
of probability distributions (e.g. standard word n-gram, class-
based, phrase-based). The transition probabilities and state space
are learned via self-organizing algorithms [8, 9].

2.6. Search Algorithms

The different constraints used in speech recognition can naturally
be represented by weighted automata and can then be combined
to obtain a recognition network. Weighted composition is used
to combine the component automata, while determinization, mini-
mization and weight-pushing optimize the result in time and space.
See [10] for a description of these general algorithms.

The construction and optimization of the recognition network
(transducer) that we use is presented in details in [11]. Here, we
will only give a brief outline of the construction. The recogni-
tion transducer N , mapping directly sequences of context-depend
phones to sequences of words, is built by combining the context-
dependency transducer C, the pronunciation dictionary L and the

I - 1034

➡ ➡

language model G in the following way:

N = πε(C ◦ det(L̂ ◦ G))

where ◦ denotes the composition of weighted transducers, L̂ in-
dicates that disambiguation symbols have been inserted in L to
ensure the determizability of L ◦ G, det stands for the weighted
determinization algorithm applied in the log semiring and πε re-
places the disambiguation symbols with ε transitions. Addition-
ally, weighted (encoded) minimization can be used to reduce the
size of the intermediate and final transducers.

Ideally, the weight pushing algorithm [10] in the log semiring
should be applied to N to ensure a distribution of the weights along
the paths beneficial to the pruning efficacy of a standard Viterbi
beam search. But, since we are applying determinization in the
log semiring, it is actually sufficient to ensure the stochasticity of
each components, i.e. L and G.

For L, this can be done by ensuring that the different pronun-
ciations of a word are weighted according to a probability distri-
bution – the uniform distribution for instance. For G, a source of
non-stochasticity is the way the silence tokens are handled. Si-
lence tokens are typically not modeled within language models.
They are added after the fact, most commonly as free cost loops at
various states in the automata representation of the model, such as
the initial, final, and unigram states. This makes the model non-
stochastic. As described in [11], we use a stochastic silence model
where after the emission of each word, there is probability p of
emitting a silence token and probability 1−p of stopping emitting
silence tokens and being able to emit the next word.

A synchronous Viterbi beam search is then used to find given
an acoustic observation, the path in N that minimize the combina-
tion of the grammar weight, the weight of that path in N , and the
acoustic weight.

The FSM library [12] is used for the representation and ma-
nipulation of weighted transducers and automata, the GRM li-
brary [13] for the construction of the language model G, and the
dmake utility from the DCD library [14] for the construction and
optimization of the recognition transducer.

2.7. Confidence Scores

Confidence scores are important in ASR for detecting out of vo-
cabulary words and misrecognized phrases.

Scores can be of acoustic origin, computed through a likeli-
hood ratio test where the numerator is the likelihood of speech
feature frames along the best path and the denominator is the like-
lihood of the same frames either evaluated on a generic-speech
HMM (garbage score) or taken from the best active network node
for each frame (unconstrained score). The ratios are normalized
using a task dependent curve to fall between 0 and 1 and then com-
bined. Acoustic scoring works best for small rule based grammars.

We also use the lattice output of the ASR to generate word
confidence scores. The algorithm is based on the pivot alignment
for strings in the word lattice. To obtain word confidence scores,
we combine the posterior probabilities of the transitions in the lat-
tice corresponding to the same word, and which occur at around
the same time interval. A detailed explanation of this algorithm
and the comparison of its performance with other approaches is
presented in [15].

To evaluate the quality of confidence scores we introduce a
confidence threshold and look at the Equal Error Rate (EER) in a

binary classification scheme where each word is classified as cor-
rectly recognized if its confidence score exceeds the threshold and
as misrecognized otherwise. The EER is the point where the false
rejection and false acceptance rates are equal. For example, on a
test set of 2,174 utterances (31,018 words) from the AT&T Spo-
ken Dialog System Database where the word accuracy is 70.5%,
the EER is 22.5%. The quality of the scores increases, witnessed
by a lower EER, as the recognition beam increases. The computa-
tion of word scores adds a 2-4% overhead to the total recognition
time. Once computed, the scores can be combined (via arithmetic
or geometric mean, etc.) to generate whole sentence scores.

2.8. Endpointing and Bargein

The role of endpointing is to keep excessive silence out of the de-
coder and to promptly detect the end of user speech. We use an
energy based endpointer for speech detection and improve detec-
tion of end of sentence using feedback from the decoder.

Bargein allows the user to start talking before the prompt is
over. For a smooth bargein the prompt has to be cut off as soon as
the bargein is determined to be real and the determination has to
happen quickly. This is obviously a balancing act. We have been
using a language model based bargein where bargein is triggered
when recognition reaches specially designated nodes.

3. EXPERIMENTAL RESULTS

We now present results from two sets of data acquired from the
AT&T VoiceTone R© service. In both cases the acoustic model
used has been trained on over 100 hours of speech. This includes
field data representing digits, names, addresses, as well as natural-
language customer care utterances. For each of the tasks, we show
the trade-off between word accuracy and CPU time/audio time by
simply varying the width of the Viterbi search beam. Each re-
sult displays three curves, the first one showing the baseline ML
performance, the second one showing improvements after MMIE
training and network optimization, and the third one showing ad-
ditional benefits after Gaussian selection and real-time VTLN. The
baseline ML performance already includes SSE processing and
likelihood precalculation.

The alpha-digit task (Figure 1) represents 1,000 7-character
strings. The natural-language customer care task (Figure 2) repre-
sents 5,000 utterances. For a given operating point just after the
knee in the curves (a) MMIE training and network optimization
provide 3-4% absolute improvement in word accuracy and a fac-
tor of nearly two speed-up in processing time, and (b) by further
adding Gaussian selection and real-time VTLN, we obtain over 5%
absolute improvement in word accuracy and a factor of 2-3 speed-
up in processing time over the baseline system. The results show
the impact of WATSON’s more advanced algorithms on different
types of language models and task complexities.

4. SUMMARY

We have outlined the current configuration of the AT&T WAT-
SON speech recognizer. The algorithms identified were selected
for their high effectiveness during field performance. We showed
a 5% absolute improvement in word accuracy and a factor of 2 to
3 speed-up in processing using these algorithms.

The WATSON recognizer is currently being used to support
several large-scale speech applications as part of the AT&T VoiceTone R©

I - 1035

➡ ➡

80

85

90

95

100

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

W
or

d
ac

cu
ra

cy
 (

pc
t)

CPU time / audio time

AlphaDigits

MLE
MMIE-NETW

MMIE-NETW-GS

Fig. 1. Rule based grammar results (Alphadigit strings).

60

65

70

75

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4

W
or

d
ac

cu
ra

cy
 (

pc
t)

CPU time / audio time

CUSTOMER CARE

MLE
MMIE-NETW

MMIE-NETW-GS-VTLN

Fig. 2. Stochastic grammar results (Customer care dialog).

service. We continue to research WATSON configurations and al-
gorithms that can improve the real-time performance of these ap-
plications.

5. ACKNOWLEDGMENTS

We would like to thank R. Knag and I. Arizmendi for their contri-
bution in the development of the WATSON recognizer.

6. REFERENCES

[1] N. Kumar and G. Andreou, “Heteroscedastic discrimi-
nant analysis and reduced rank HMMs for improved speech
recognition,” Speech Communication, vol. 26, pp. 283–297,
1998.

[2] A. Ljolje, M. Saraclar, M. Bacchiani, M. Collins, and
B. Roark, “The at&t rt-02-stt gt10xrt system,” in RT02 Work-
shop, Vienna, Virginia, 2002.

[3] A. Ljolje, “Multiple task-domain acoustic models,” in Proc.
ICASSP, 2003.

[4] A. Ljolje, V. Goffin, and M. Saraclar, “Low latency real-
time vocal tract length normalization,” in Text, Speech and
Dialog, Brno, Czech Republic, September 2004.

[5] M. Saraclar, M. Riley, E. Bocchieri, and V. Goffin, “Towards
automatic real time broadcast news transcription,” in Proc.
ICSLP, 2002.

[6] E. Bocchieri, “Vector quantization for the efficient computa-
tion of continuous density likelihoods,” in Proc. ICSLP-96,
Mineapolis, April 1993, pp. 692–695.

[7] G. Saon, G. Zweig, B. Kingsbury, L. Mangu, and U. Chaud-
hari, “An architecture for rapid decoding of large vocabulary
conversational speech,” in Proc. Eurospeech, Geneva, 2003,
pp. 1977–1980.

[8] G. Riccardi, R. Pieraccini, and E. Bocchieri, “Stochastic au-
tomata for language modeling,” in Computer Speech and
Language, 1996, vol. 10(4), pp. 265–293.

[9] G. Riccardi, A. L. Gorin, A. Ljolje, and M. Riley, “A spo-
ken language system for automated call routing,” in Proc.
ICASSP, Munich, 1997, pp. 1143–1146.

[10] M. Mohri, “Finite-state transducers in language and speech
processing,” Computational Linguistics, vol. 23, no. 2, 1997.

[11] M. Riley C. Allauzen, M. Mohri and B. Roark, “A general-
ized construction of integrated speech recognition transduc-
ers,” in Proc. ICASSP, 2004, vol. I, pp. 761–764.

[12] F. Pereira M. Mohri and M. Riley, “The design princi-
ples of a weighted finite-state transducer library,” Theoret-
ical Computer Science, vol. 231, no. 1, pp. 17–32, 2000,
http://www.research.att.com/sw/tools/fsm.

[13] C. Allauzen M. Mohri and B. Roark, “A general
weighted grammar library,” in Proceedings of the Ninth
International Conference on Implementation and Appli-
cation of Automata (CIAA 2004). 2004, vol. to ap-
pear of Lecture Notes in Computer Science, Springer,
http://www.research.att.com/sw/tools/grm.

[14] M. Mohri and M. Riley, DCD Library - De-
coder Library, software collection for decoding and
related functions, AT&T Labs - Research, 2003,
http://www.research.att.com/sw/tools/dcd.

[15] D. Hakkani-Tür and G. Riccardi, “A general algorithm for
word graph matrix decomposition,” in Proc. ICASSP, Hong
Kong, 2003.

I - 1036

➡ ➠

