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ABSTRACT

Many speech and language processing problems have been suc-
cessfully cast as classification problems— associating a token with
a label from a prespecified label set. However, in all these appli-
cations the set of labels is regarded as a flat list of symbols with
no inherent internal structure and no co-constraints among the la-
bels. In this paper, we present a classification task using structured
word labels called Supertags and discuss methods that exploit the
structure of these labels in the context of natural language genera-
tion. Supertags encode predicate-argument information along with
syntactic ordering constraints that can be exploited for realizing a
sentence. We report the accuracy of supertagging models for a node
using features derived from its local tree context and attributes of
the supertags.

1. INTRODUCTION

Many problems in Speech and Natural Language Processing can
be encoded as classification problems — associating a token with a
label from a prespecified label set. Examples of such problems in-
clude assigning part-of-speech labels to words (POS tagging), iden-
tifying names of people, places etc. (named entity tagging), routing
an incoming call to the appropriate destination (call routing), and
assigning a label for a text (text classification). Although the same
classification technique can be used for all these tasks, the token of
classification and the size of the label set differs across tasks. The
token to be classified varies from entire documents as in text clas-
sification, to substrings of a string as in named entity classification
to individual words as in POS tagging. Also, the size of the label
set varies from two classes for spam filtering to tens of classes for
text classification and POS tagging. However, most of these classi-
fication tasks have viewed the set of classes as a flat list of symbols
with no significant structure for the members and no relationships
among the members of the class set. Furthermore, during decod-
ing the classification techniques have not exploited hard constraints
imposed by a class on the presence or absence of other classes.

In this paper, we review the problem of associating words with
highly structured classes called supertags that encode syntactic in-
formation and predicate-argument structure. Supertags have been
shown to be a useful level of representation for a number of NLP
tasks [1], including parsing, language modeling and natural lan-
guage generation. Supertags not only are structured labels, but
also define relations between members of the supertag set and co-
constrain other supertags. Supertagging, the problem of assigning
the correct supertag for a word has been previously modeled using
a generative model [1]. In this paper, we provide a classification
model for supertagging in the context of natural language genera-
tion task; a generative model for the same task has been explored
in [2]. The input tree to the natural language generation component
is transformed into a string using information encoded in supertags.
We show that exploiting the structure and constraints of supertags
improves supertagging accuracy.
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The paper is organized as follows. In Section 2, we discuss
the details of the supertag representation, and in Section 3, we re-
view the components of a natural language generation system. We
present the model for supertagging in Section 4 and the results from
experiments are presented in Section 5.

2. SUPERTAGS

Supertags are elementary trees of a Tree-Adjoining Grammar (TAG) [3].

In a lexicalized TAG, each word of a grammar is associated with
one or more supertags. The word that is associated with the su-
pertag is called the anchor of the supertag. Supertags are combined
with each other using two operations, substitution (which appends
one supertag at the frontier of another) and adjunction (which in-
serts one supertag into the middle of another). The combining of
supertags results in two structures — a derived tree and a derivation
tree. The derived tree is the tree resulting from substituting and
adjoining supertags while the derivation tree records the process of
constructing the derived tree.

Trees used in derivation

TN el

NE NPy VP PP NP
AVAR RN TRPZN |
N/\ N v Ad‘v‘ P NP+ A/\ N
\ \ \ \ \ \
Stock prices rose fractionally  in mod‘erale trading
By % %y B B3 By %

Other supertags for the lexemes found in the training corpus:

oy oy ag Be og none ay
Bs s a0 B b7 s
2 more 5 more 11 more 4 more 10 more 5 more

Fig. 1. The substitution and adjunction operations needed to de-
rive Stock prices rose fractionally in moderate trading; dotted lines
show possible adjunctions that were not made

For example, to derive the sentence Stock prices rose fraction-
ally in moderate trading from the grammar in Figure 1, we adjoin
the tree for stock into the tree for prices. We then substitute the tree
for prices and adjoin the tree for fractionally into the tree for rose
at the NP and VP nodes respectively. We then adjoin the tree for
moderate into the tree for trading and substitute it into the tree for
the preposition in. Finally, the tree for the preposition in is adjoined
into the tree for rose, resulting in a complete derivation.

The derivation tree is constructed as follows: whenever we ad-
join or substitute a supertag ¢; into a supertag t2, we add a new
daughter labeled ¢; to the node labeled ¢2. We notate the links with
role information which is derived from the node at which substitu-
tion or adjunction takes place. The derivation tree for our derivation
is shown in Figure 2(a). As can be seen, this structure is a de-
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pendency tree and resembles a representation of lexical argument
structure.

o, rise
subj adj adj b i o
P”‘ceg fractionallyg ing price fractionally in
adj b ) .
stock g tol‘ildi]‘lg adj obj
1 w ‘ o, stock trading
dj
derat !
moderateg moderate
(@) (b)

Fig. 2. (a): Derivation tree for LTAG derivation (b): Input for
the surface realizer component for Stock prices rose fractionally
in moderate trading

Unlike (un)lexicalized phrase structure rules which are single
level trees, supertags are multi-level trees which encapsulate both
predicate-argument structure of the anchor lexeme (by including
nodes at which its arguments must substitute) and morpho-syntactic
constraints such as subject-verb agreement within the supertag as-
sociated with the anchor. This property is referred to as TAG’s
extended domain of locality and a supertag is argued to be the do-
main over which linguistic dependency constraints can be speci-
fied. Thus, recursive structures (such as adjuncts) are factored out
from these domains of dependencies and represented as separate
supertags, known as auxiliary supertags. The non-recursive trees
are called initial supertags.

As aresult of the constraint that a supertag express all and only
the predicate-argument dependencies, there are a number of su-
pertags for each lexeme to account for the different syntactic trans-
formations (relative clause, wh-question, passivization etc.). Most
of the process of parsing a sentence can be viewed as disambiguat-
ing among the set of supertags associated with each lexeme, given
the context of the sentence. This task of supertag disambiguation
is termed as supertagging. In order to arrive at a complete parse,
the only step remaining after supertagging is establishing the at-
tachments among the supertags. Hence the result of supertagging
is termed as an “almost parse” [1].

2.1. Supertag Set

The set of supertags is derived from a phrase-structure annotated
TreeBank such as the Penn TreeBank [4] as illustrated in [5, 6].
These supertags are extracted by specifying certain patterns on the
phrase structure trees so as to localize predicate-argument informa-
tion and factor out recursive structures. Such an extraction proce-
dure results in a supertag set of about 5000 supertags.

3. SUPERTAGS FOR NATURAL LANGUAGE
GENERATION

Within natural language processing, natural language generation
(NLG) is the task of determining a surface utterance (written or
spoken) from some underlying representation. For example, the
dialog manager in a dialog system can determine communicative
goals for the next turn of the dialog system, and the NLG compo-
nent then realizes these goals as a spoken utterance. NLG is often
divided into three task groups: text planning is the task of de-
termining communicative goals; sentence planning is the task of
choosing abstract linguistic resources to achieve the communica-
tive goals; and surface realization is the task of implementing the
sentence planning choices in a well-formed surface string or spo-
ken utterance specification in the target language. In this section we
focus on the surface realization component and describe the input
representation we work on and the choices that need to be made to
produce an utterance.

The input representation we assume in this paper is an un-
ordered deep dependency syntax tree, shown in Figure 2(b). Each
node in the tree is labeled with a meaning-bearing (‘“autosemantic™)
lexeme, and the arcs are labeled with deep-syntactic relations (deep
subject, deep object, deep indirect object, adjunct). The input thus
encodes lexical choice and abstract syntactic choice. We also as-
sume that each node is already annotated with semantic features. A
semantic feature changes the meaning of a proposition, not just its
linguistic realization. Semantic features which we do not determine
include tense (for verbs), number and definiteness (for nouns), or
degree of comparison (for adjectives and adverbs).

The surface realizer’s task is to determine, for each node in
the tree, the correct syntactic realization. This means determining
which function words are to be inserted (such as determiners for
nouns or auxiliaries for verbs), determining the word order among
the node and its dependents, and determining the morphological in-
flection for the node’s lexeme. We exploit the information encoded
in the supertags for this purpose. As seen earlier, supertags encode
the relative ordering information between the anchor and its depen-
dents. Thus for each node, selecting a supertag that is compatible
with the children nodes, provides linear ordering constraints for the
nodes in that subtree. This information is used to construct the ut-
terance as discussed in [2]. In this paper, we present discriminative
models for selecting the appropriate supertag for each node in the
input tree. We show that exploiting the structure of supertags in this
selection process improves the accuracy of supertag assignment.

4. SUPERTAG DISAMBIGUATION

The objective is to assign supertags for the nodes of the input tree.
This can be formulated as in Equation 1, where the T, is the input
tree with lexical items and 7 is the tree with supertags assigned to
the nodes of the input tree. In previous work, we have used a gen-
erative model to disambiguate the supertags [2]. In this paper, we
present a conditional probability model which is trained discrimi-
natively. This model allows us to incorporate richer conditioning
context without the problem of sparsity of data — a problem with
generative models.

T; = argmazx Pr(Ty,Ts) ¢))

Ts

4.1. Discriminative Supertagging models

We determine the labeling (T7") for a tree Ty, by maximizing the
posterior probability as shown in Equation 2. We use a large set of
features of T3, and its context to determine the posterior probability
and hence resort to a classification algorithm that is robust to large
set of features for this purpose.

T, = argmaz Pr(Ts|Ty) 2
Ts

We use the AdaBoost classifier [7] wherein a highly accurate
classifier is built by combining many “weak” or “simple” base clas-
sifiers f;, each of which may only be moderately accurate. The se-
lection of the weak classifiers proceeds iteratively, picking in each
iteration the weak classifier that correctly classifies the examples
that are misclassified by the previously selected weak classifiers.
Each weak classifier is associated with a weight (w;) that reflects
its contribution towards minimizing the classification error. The
posterior probability of Pr(Ts | Ty ) is computed as in Equation 3.

1
Pr(Ts | Tw) = (1 + e~ 2T wirfi(Tu)) )

4.2. Features used for Supertagging

We use the local tree context of a node to determine its supertag
label. In general, the local context for a node includes the lexeme
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and part-of-speech (POS) label of the node’s mother and the lex-
eme, POS and supertag labels for all its daughters in addition to the
lexeme and POS of the current node. All these attributes of the local
context are regarded as features to the boosting algorithm. Since a
prior bound cannot be set for the number of daughters for a given
node, we model the lexeme, POS, supertag attributes of the set of
daughters as an unordered bag of lexeme features, POS, supertag
features respectively. This results in a fixed size feature vector for
each node. From these feature vectors, we create a set of weak
learners that test the values of these features. For the features that
are bags, the weak learners test the presence of a particular value in
the bag.

4.3. Greedy Decoding

The assignment of labels to an input dependency tree using these
models is completely straightforward. The boosting model is queried
with the local context that is appropriate for that particular model
and the tag with the highest score is assigned to the node. Thus,
we have a greedy decoder. The direction of decoding — top-down
or bottom-up — depends on the particular model being used. In
this paper, we use bottom up decoding. For the full model, the
bottom-up order of decoding is the natural order of decoding, since
the children’s supertag would have been determined by the time the
supertag for the current node needs to be determined.

5. EXPERIMENTS

In this section, we describe a set of experiments and present re-
sults for supertagging an input tree using discriminative models
discussed previously. The input dependency trees were created by
transforming the phrase structure tree annotations in the Penn Tree-
Bank of the Wall Street Journal corpus. The conversion process
produces input representations that are described in detail in Sec-
tion 3. We use the Sections 01-22 as our training set (38332 sen-
tences) and Section 00 as our test set (a total of 1745 sentences).
The baseline of selecting the most frequent supertag for a lexeme
results in an accuracy of 60.9% on the test set.

5.1. Results from Discriminative Model

We partitioned the training data based on the lexeme and for infre-
quent lexeme, we used the POS information to partition the data
and train classifiers. Infrequent lexemes were those that occurred
less than 5 times in the training corpus. Thus, the classifier was
factored on the lexeme information for frequent lexemes and POS
information for infrequent lexemes.

P(S |lex,lexPOS,...)
= Plez=w(S|lexPOS,...) if count(w) >=5
= Piezpos=p(S|childPOS ...) if count(w) <=5

In Table 1 we present the results of supertagging classification
models for frequent and infrequent lexemes. In these experiments,
we supertag the current node assuming the features that are used
for classification are correct. In the next section, we report results
on true decoding where we relax this assumption. We have inves-
tigated a number of models with different features but we report
here only the best performing model due to space limitations. The
best performing model used the lexeme and POS information of the
mother, the current node and children nodes in addition to the chil-
dren supertags and their role information as features. The overall
performance for the entire test data set is 86.9%.

5.2. True Classification and Accuracy

In the set of experiments presented in the previous section, the su-
pertags for the current node in a tree was determined assuming the

Schema used to represent a node Accuracy(%)
Full Model: Lexeme,Lexeme POS,
Children Lexeme(s), Children POS(s),
Children Supertags, Children Roles,
Mother Lexeme, Mother POS 86.8%
PosFull Model:
Full Model without Lexeme 87.4%
[ Overall | 86.9% |

Table 1. Performance of supertagging models using different fea-
ture sets for frequent lexemes (Full Model) and infreugent lexemes
(PosFull Model)

children supertags are correct. The accuracy numbers are thus up-
per bounds of supertagging accuracy since in reality the children
supertags have to be determined by the model. In order to arrive
at true decoding we classify the nodes of the tree in a bottom-up
scheme, beginning at the leaves and use the supertag predictions of
the children as features for classifying the current node. We use the
models that include role information from the Table 1 for frequent
and infrequent lexemes respectively for true bottom-up decoding.
The supertag for the current node is however chosen greedily at ev-
ery node. Decoding in this manner, results in a accuracy of 85.8%,
a drop in accuracy of about 1% (86.9% to 85.8%).

5.3. Exploiting compatibility constraints during decoding

The result of classification is a local supertag assignment for each
node of the input tree. However, the supertag assignments must
be compatible in order to form a globally consistent tree. These
compatibility constraints from the supertags can be used to weed
out incompatible supertag configurations. After the classification
of a node is done, the assigned supertag is checked for compati-
bility constraints with respect to its children supertags. For exam-
ple, if the assigned supertag to a node has no substitution nodes
(in its tree representation) and if one of the children’s assigned su-
pertag is meant for substitution, in the mother supertag, then this
particular configuration of supertags for the mother and children is
regarded as not compatible. In such cases, the assigned supertag
for the mother node is discarded and the next best configuration
is examined. Similar checks involving the grammatical type and
role information of the children nodes are used to filter out incom-
patible configurations. Exploiting these compatibility constraints
boosts the supertagging accuracy to 86.4% (from 85.8%).

5.4. Exploiting compatibility constraints during training

In the previous set of models, the training data was partitioned on
the lexeme and a classifier was trained for each individual lexeme.
In those models, the deep role information (subject, object, indi-
rect object) provided in the input dependency tree in conjunction
with the grammatical category (NP, S, AdvP, AdjP) is used to con-
struct the subcategorization information (DSUBCAT) of a node and
this feature is used during supertagging of a lexeme. For example,
the verb like has a DSUBCAT=(IN Py,IN P1) in John likes peanuts
and has a DSUBCAT=(IN Py,S1) in John likes to shop. In order
to select supertags that ensure the role constraints from the input
are satisfied, we use the compatibility check described previously.
However, the boosting training procedure does not guarantee the
selection of DSUBCAT as an active weak learner during the train-
ing process. Thus by treating the DSUBCAT as a feature, the strict
constraint is transformed into a weak constraint.

In order to maintain the strict constraint imposed by the DSUB-
CAT feature, we factor the model on the DSUBCAT feature of a su-
pertag of a node instead of the lexemes, and train classifiers for each
partition of the training data. This way of factoring the training, en-
sures that the DSUBCAT feature is used as a strict constraint.

The training process is further factored to take into account the
lexeme information for frequent lexemes, POS information for less
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frequent ones in conjunction with the DSUBCAT information. For
the infrequent lexemes, we use the model factored only on the POS
information. Thus:

P(S|dsubcat, lex,lexPOS,...)
= Puisubcat=d,iecz=w (S|lexPOS,...) if count(w) > 40
= Pysubcat=d,lezP0s=p(S|childPOS,...)
if b < count(w) <= 40
Pieocpos=p(S|childPOS ...) if count(w) <=5

While decoding, the DSUBCAT information for a node is de-
rived from role information specified in the input in conjunction
with the grammatical category of the children’s supertags. For ex-
ample, if the two children of a node like are specified with roles
as 0 (subject) and I (object) and during bottom-up decoding it is
determined that the grammatical category of the root node of the
children’s supertags are NP and S respectively, then the DSUBCAT
feature for the current node is (IN Py, S1). Now, if the lexeme like
happens to be a frequent lexeme, then the classifier indexed on
(dsubcat=(N Py, 51),lex=like) is used to classify the node.

By factoring the model as described above, we have ensured
that the compatibility constraint is always satisfied. The import of
this constraint is attested by the improved performance on supertag-
ging: an accuracy of 89.5% (from 86.4%).

5.5. Classification accuracy using attribute-value representa-
tion of supertags

In the preceeding experiments, supertags were treated as a single
label for classification models. However, supertags can be charac-
terized by a fixed set of attribute value pairs. These attributes can
be viewed as dimensions of a linguistic space in which individual
supertags are unique points. We represent each supertag with the
set of attributes shown in Table 2. We regard each attribute as a
dimension for classification and their values as the classes. Thus
supertagging, in this view, amounts to obtaining the class values
for each of the fixed set of attributes.

We have as many classifiers as the number of attributes (ex-
cept for those that are derivable from the input dependency tree).
The features used for training these classifiers are the same that we
have used for supertag classification. Table 2 shows the accuracy
of two baseline models and the accuracy of the boosted classifier
model on the same test data. The first baseline is using the most
frequent value of an attribute as the result class. This is in contrast
to the accuracy of the boosted classifiers which use all the infor-
mation from the tree context as features to arrive at the class. It
is interesting to note that the accuracy on certain attributes such as
Modification Category, Modification Category, Predicative Cate-
gory of Root node improve significantly as the conditioning context
increases.

During bottom-up decoding on the tree, at each node, we pre-
dict the value for each attribute using the corresponding classifier.
The predicted values of the attributes in conjunction with the at-
tribute values derivable from the input (such as DSUBCAT, POS
etc.) is used to construct the decoded attribute-value (AV) repre-
sentation. This decoded AV is mapped into a supertag label. In
case there are multiple supertags with the same AV representation,
the supertag with the highest frequency is selected. For cases where
there is no supertag with the decoded AV representation, then the
AV with the smallest edit distance from the decoded AV is used to
retrieve the supertags. The overall supertagging accuracy with this
method of decoding rises to 90.7%.

Table 3 summarizes the previous results and attests to the fact
that exploiting the structural constraints encoded in supertags al-
lows us to improve supertagging accuracy beyond models that treat
supertags as a flat list of labels.

Attribute Values Baseline | Boosting

Dative Shift +/nil 0.99 0.994

Direction of

Modification Left/Righ/nil 0.43 0.962

Empty Subject +/nil 0.98 0.99

Modification Category | S,NP,VP.... 0.44 0.955

Particle Shift +/-/nil 0.99 0.999

Predicative +/-/nil 0.64 0.998

Predicative Auxiliary +/nil 0.99 0.999

Argument Position

of Relativization +/0/1/2/nil 0.98 0.995

Category of Root node | S,NP.... 0.35 0.975

Voice active/passive/ | 0.87 0.993
passive_by/nil

Argument Position

of Wh-Extraction 0/1/2/nil 0.99 0.997

Table 2. List of attributes used to represent a supertag and their
accuracies under different models.

Model Supertagging
Accuracy

Supertags as labels 85.8%

Exploiting compatibility | during decoding | 86.4%
constraints during training 89.5%

Attribute-value representation 90.7%

Table 3. Improvement in supertagging accuracy by exploiting the
supertag representation.

6. CONCLUSIONS

Supertags encode predicate-argument structure and have been shown
to be useful for parsing. In previous work, we have used supertags
with a generative probabilistic model for surface realization, a sub-
task of Natural Language Generation. Given the limitations of gen-
erative models in terms of sparseness to large feature sets, we have
presented, in this paper, a discriminatively trained model for select-
ing supertags. We have discussed several models that exploit the
linguistic constraints encoded in the supertags and show the im-
provement in accuracy over models that ignore these constraints.
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