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ABSTRACT

Phrase-based translation models have shown clear advantages over
word-based models, and weighted finite-state transducers (WFST’s)
provide a unified framework for integrating the various compo-
nents of a speech-to-speech translation system, such as speech
recognition and machine translation. This paper combines these
two ideas by proposing a constrained phrase-based statistical ma-
chine translation system that we implement using WFST’s. We
evaluate the proposed model on a bidirectional Chinese-English
translation task and show improvements over our previous system.

1. INTRODUCTION

Finite-state methods have been applied in a wide range of speech
and language processing applications [1]. Of particular interest are
recent efforts in approaching the task of statistical machine transla-
tion (SMT) using weighted finite-state transducers (WFST’s). Var-
ious translation methods have been implemented using WFST’s in
the literature. For example, Knight et al. [2] describe a system
based on word-to-word statistical translation models, Bangalore et
al. [3] use WFST’s to select and reorder lexical items, and Kumar
et al. [4] implement alignment template translation models using
WFST’s.

One of the reasons why WFST-based approaches are favored
is because of the availability of mature and efficient algorithms
for general purpose decoding and optimization. For the task of
speech-to-speech translation, where our ultimate goal is to obtain
a direct translation from speech in a source language to a target lan-
guage, the WFST framework is even more attractive as it provides
the additional advantage of seamlessly integrating speech recogni-
tion and machine translation. This framework can be used to incor-
porate heterogeneous statistical knowledge from multiple sources,
by using the composition operation to combine cascaded models
expressed as WFST’s. This should be particularly valuable when
the translation task is complicated by the presence of disfluent con-
versational speech or recognition errors.

Compared with word-level SMT [5], phrase-based methods
explicitly take word context into consideration when translating a
word. Koehn et al. [6] compares several schemes as to how to es-
tablish phrase-level correspondences, and showed that all of these
methods consistently outperform word-based approaches.

The purpose of this paper is to introduce a model for con-
strained phrase-based SMT that can be rapidly implemented using
WFST’s. The proposed approach incorporates contextual infor-
mation explicitly into both the translation and language models.
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This method differs from existing phrase-based methods primar-
ily in two ways. First, each pair of bilingually-aligned sentences
is deterministically partitioned into phrases, so only a single of
set of phrases is extracted from each. Thus, only a small num-
ber of constrained phrases are generated from a parallel corpus,
compared with full phrase-based approaches where a huge set of
phrases may be extracted. Second, unlike phrase-based methods
where phrase translation probabilities are estimated from relative
frequencies derived from word-level alignments, this method first
retokenizes the training data using extracted phrases. Next, the re-
tokenized parallel corpus is realigned and the model parameters
are estimated based on this new alignment. In addition, the retok-
enized data is used to train a monolingual language model, so that
a phrase-based n-gram language model is obtained.

In this approach, contextual information is captured in two
ways. By translating word sequences (or phrases) directly into
other word sequences (rather than word-by-word), we preserve the
contextual information present within phrases. Using a phrase-
based language model captures the contextual information present
between phrases.

The remainder of this paper is organized as follows: Sec. 2
reformulates phrase-based SMT in terms of WFST’s. Next, the
implementation details of constrained phrase-based SMT using
WFST’s are discussed in Sec. 3. Experimental results are pre-
sented in Sec. 4.

2. A WFST PERSPECTIVE OF SMT

We start by introducing the concept of a token. In this paper, a to-
ken is defined as a semantic unit in the parallel sentence, which can
either be a word or a phrase (i.e., a sequence of words). Specifi-
cally for Chinese, a token refers to a single segment in a segmented
Chinese character sequence.

From the perspective of WFST’s, translating a foreign token
sequence fJ
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where mI
1 is the random variable describing the permutation model,

nI
1 is the fertility model which describes how many source words

or phrases should be generated for each target token, and gI
1 is

the “NULL insertion” model which describes for each target token
whether a NULL token that corresponds to one or more superflu-
ous tokens in the source language should be inserted before it.

The key observation in implementing SMT using WFST’s is
that the translation model can be decomposed as a chain of condi-
tional probabilities as follows:
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The conditional probability distributions in Eqs. 3–7 can be es-
timated from parallel training data using some assumptions and
approximations, as described by Brown et al. [5]. Furthermore,
each distribution can be represented by a WFST that models the
relationship between its input and output, as described in Sec. 3.2.
Therefore, the right side of Eq. 2 can be implemented as a cas-
cade of finite-state machines that are connected by the composi-
tion operation; and the maximum operator in Eq. 2 can be realized
through standard Viterbi search on the resulting translation graph.

3. CONSTRAINED PHRASE-BASED SMT VIA WFST

The implementation of constrained phrase-based SMT using WFST’s
consists of three steps. First, we need to generate aligned phrase
pairs from a parallel corpus, and estimate the corresponding trans-
lation model and language model from the training data. Second,
such models need to be compiled into finite-state machines. Fi-
nally, an efficient search is required for fast translation.

3.1. Word Alignment and Phrase Extraction

For Chinese-English translation, the Chinese sentences in the par-
allel corpus need to be segmented by inserting whitespace be-
tween appropriate characters. Chinese text segmentation has been
widely studied in various language processing tasks, and it should
be noted that what defines the “best” segmentation of a given sen-
tence may depend on the target application. In our task, our goal is
to extract monolingual phrases rather than individual words; i.e.,
we consider each segmented token to be a Chinese phrase. In our
proposed method, phrases are first defined for Chinese and then
English phrases are learned from the parallel corpus. To this end,
we prefer longer Chinese segments subject to the constraint that
the corresponding English words form a consecutive sequence.

The segmentation is performed using a stack decoder that max-
imizes the probability of the sequence of segmented tokens. The
sequence probability is modeled by a trigram language model with
a vocabulary of 32,000 Chinese phrases. In addition, we add in a
length penalty factor that encourages the search to prefer longer
phrases.

Next, we collect English phrases from the parallel corpus us-
ing the segmentation we have for the Chinese data. To this end,
word-level alignment is first carried out using the GIZA++ toolkit

[7] that implements the “IBM models” proposed by Brown et al.
[5]. As noted by Och and Ney [7], the baseline IBM models
possess the limitation that they do not allow a source token to
be aligned with two or more target tokens. Therefore, we first
align the training data in the reverse direction, i.e., from English
to Chinese, so that each Chinese token is allowed to map to mul-
tiple English tokens. Since longer phrases are preferred in our
Chinese segmentation, it is typical that more than one English
word is aligned with each Chinese token. English phrases are then
extracted based on the Viterbi alignment of the parallel corpus:
whenever a Chinese token is aligned with a sequence of adjacent
English words, this sequence is selected as a candidate English
phrase. There is no limitation on the length of candidate phrases.

These grouped English word sequences are collected along
with their absolute frequencies in the aligned parallel corpus. A
high frequency indicates a strong tendency for the word sequence
to occur as a phrase in the given parallel corpus, and we thus re-
tain such word sequences as phrases. For low-frequency word se-
quences, we compare their frequency in aligned text with their fre-
quency in text ignoring alignments; those word sequences with
high relative frequency are also preserved. Finally, the remain-
ing low-frequency word sequences are intersected with a domain-
specific phrase dictionary and the overlapping entries are retained.

Next, the training corpus is retokenized using the induced En-
glish phrases. For example, the text “chronic medical concerns”
is tokenized as the single token “chronic medical concerns” in the
training data. Note that we replace all occurrences of a word se-
quence with its corresponding phrase, whether or not the word se-
quence aligns to a single Chinese token in the given sentence pair.
In this way, retokenization may correct previous alignment errors.

The retokenized parallel corpus is then aligned again in both
directions, i.e., Chinese to English and English to Chinese. The
intersection of these two alignments is computed to improve align-
ment accuracy [7], followed by a number of heuristics that extend
alignments by including likely correspondences between English
and Chinese tokens. In addition to the expansion heuristics dis-
cussed by Koehn et al. [6], we also include the alignment between
ēi and f̄j if the current estimate of P (f̄j |ēi) is larger than some
threshold. Given this refined alignment, the fertility and transla-
tion models are reestimated by collecting the relevant relative fre-
quencies. The same retokenization technique is also applied to
monolingual language model training data, to build appropriate
constrained phrase-based language models.

Compared with methods where translation probabilities for
collected phrase pairs are estimated from relative frequencies com-
puted from word-level alignments [6], we believe that phrase-based
alignments may significantly modify alignment probabilities, in-
cluding fertility and translation probabilities.

3.2. WFST Cascades for SMT

Corresponding to Eqs. 3–7, the following five WFST’s need to be
constructed to perform a translation task: The acceptor L assigns
probabilities to target language strings based on a back-off trigram
language model, the transducer N models the fertilities of tokens
in its input; the transducer G describes the probability of generat-
ing source tokens from the NULL token; the transducer T deter-
mines the probabilities of mapping target tokens to source ones;
and the transducer M encodes the allowable reorderings of source
tokens (so as to be in the same order as the target tokens they align
to).
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Fig. 1. A portion of the translation transducer T (top) and NULL
insertion transducer G (bottom). Tokens are encoded using integer
indices.

Then, the translation of an input S can be computed by finding
the best path in the following lattice:

D = S ◦ M ◦ ((N ◦ G ◦ T )−1 ◦ L) (8)

where the WFST H = (N ◦ G ◦ T )−1 ◦ L is independent of the
input and can be constructed off-line so as to improve decoding
speed. Here, “◦” is the composition operator and “−1” represents
the inversion operation.

We note that WFST’s representing SMT models are generally
not determinizable, and the presence of a large number of transi-
tions with ε labels in the component WFST’s may cause the com-
putation of H to be difficult given typical memory constraints.
This is particularly an issue for applications with large vocabu-
laries and language models, and special consideration is required
in constructing transducers for such tasks.

We implemented the transducers T and G similarly as in [2];
portions of these WFST’s are depicted in Fig. 1. Both the input
and output labels of G indicate numeric target token ID’s. The
input and output labels of T represent target and source token ID’s,
respectively.

The natural fertility model for target token sequences inher-
ently introduces a closure that will produce infinity ambiguity. In
our system, the transducer N is implemented as shown in Fig. 2
in order to avoid ε loops, which can cause memory issues during
composition. Each branch out of the start state (at the far left) cor-
responds to a different token and its fertility probabilities; for a
given path from start to final state, the number of times an input
token is replicated in the output encodes its fertility. Thus, tokens
2 and 4 have fertilities of 0, 1, or 2; and token 3 has fertilities of
0, 1, 2, 3, or 4. In practice, the fertility transducer is pruned by
only considering fertilities with probability n(φ|ēi) > 0.01, to
reduce memory demands. Fig. 2 shows the fertility WFST for a
three-token system after pruning.

The cost associated with a transition is taken to be the nega-
tive logarithm of the corresponding probability. We use the Viterbi
paradigm (a.k.a. the tropical semiring); i.e., when two paths with
the same labels are merged, the resulting cost is the minimum of
the individual path costs. Minimization is performed following

each composition in computing H . These operations were all car-
ried out using the IBM finite-state machine toolkit [8].

3.3. On-the-Fly Decoding via WFST’s

In our stand-alone on-line translation decoder, the input source
sentence is first reordered by a permutation transducer M , which
permits each token to be distorted only within a window of size 3
centered at its original position. In addition, swapping the first and
last token of a sentence is also allowed, to account for word-order
differences between Chinese and English for questions.

To improve the speed of on-line composition and the subse-
quent search for the best path, we perform lazy composition fol-
lowed by pruning with a threshold α, so that only promising states
in D are expanded. Next, Viterbi search is applied on the pruned
graph to find the lowest cost path. Details of decoder parameter
setting and speed are provided in Sec. 4.2.

4. EXPERIMENTAL EVALUATION

We evaluated the proposed translation system on a two-way Chinese-
English speech translation task in the domain of medical care. The
objective of this system is to facilitate conversation between an
English-speaking doctor and Chinese-speaking patients.

4.1. Corpus and Setup

The training corpus was collected by IBM and other participants of
the DARPA Babylon/CAST program. The majority of the corpus
was collected from simulated English-English doctor/patient inter-
actions, and the dialogues was later translated into Chinese. There
are about 128K utterance pairs in this corpus (C1). We note that
the Chinese translations in C1 may not be representative of conver-
sational Chinese. Therefore, around 6,000 spoken sentences (C2)
were collected directly from a native Chinese community, to bet-
ter capture the linguistic characteristics of conversational Chinese.
After being transcribed and translated into English, this set of data
was also included in our corpus.

Several randomly selected dialogues from C1 and C2 were re-
served for evaluation; we refer to this data as test set 1 (T1). To bet-
ter simulate a realistic testing environment, the Chinese-to-English
(C2E) test set was selected entirely from C2 (582 sentences with
4 reference translations each), which is more conversational and
thus more challenging. Similarly, the doctor’s side of several di-
alogues selected from C1 (300 sentences with 2 reference trans-
lations each) was reserved to evaluate English-to-Chinese (E2C)
translation. The rest of the data was used as the training corpus.
No punctuation marks are present in either the training or testing
data. Further evaluation was performed using the canned data pro-
vided by the CAST program. The text-based data set is manually
transcribed from English-Chinese conversations, along with 8 hu-
man translations that are used as reference translations. We refer
to this data as test set 2 (T2). Table 1 summarizes some statistics
of the training and test corpora.

The training process described in Sec 3.1 generated a vocab-
ulary of 10,401 unique Chinese tokens and 14,069 unique English
tokens, of which 4,621 are phrases ranging in length from two to
six words. The sizes of the WFST’s built from the trained models
are listed in Table 2.
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Fig. 2. The fertility WFST N for a 3-token system.

Table 1. Corpora statistics.

Data English Chinese

Training 134K sentences
set 5.3 word/sent. 7.4 character/sent.
Test set 1 300 sentences 582 sentences
(T1) 7.1 word/sent. 8.9 character/sent.
Test set 2 132 sentences 73 sentences
(T2) 6.1 word/sent. 6.2 character/sent.

Table 2. The size of WFST’s for various models.

WFST # of states # of transitions
c2e e2c c2e e2c

T 1 1 67,980 52,689
G 2 2 14,073 10,405
N 60,695 36,176 122,684 75,139
L 23,822 23,182 150,581 146,165
H 207,552 164,435 10,375,799 9,970,106

4.2. Experimental Results

We first adjusted the pruning threshold α applied during lazy com-
position in decoding development data, to find a good balance be-
tween translation speed and performance. For the results in Ta-
ble 3, the average decoding speed on a 2.4 GHz Pentium 4 CPU
was less than 2 seconds per sentence for all tasks.

Experimental results are presented in Table 3 in terms of the
BLEU metric [9]. The translation results are compared with the
output of the NLU+NLG (natural language understanding and gen-
eration) system that we proposed in an earlier study [10]. We note
that for the NLU+NLG method, only 16K annotated sentence pairs
(A1, which is a subset of C1) were used to train the statistical pars-
ing and generation models, as these models can only be trained on
parsed data. We observe from Table 3 that the proposed WFST ap-
proach achieves superior performance over these two test sets for
both translation directions. For T1, the WFST approach obtains
a larger gain; one reason may be that T1 is better represented in
the complete training set (C1+C2) than in A1 due to its larger size.
This effect may be even stronger for the English portion of T1, and
thus the proposed WFST approach achieves a larger improvement
in E2C translation.

Table 3. Evaluation of translation performance: BLEU score.

Test Set T1 Test Set T2

C2E WFST 0.2597 0.2862
C2E NLU+NLG 0.2221 0.2785
E2C WFST 0.3266 0.2244
E2C NLU+NLG 0.2536 0.2152
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