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ABSTRACT

In this paper, we describe our efforts to develop acoustic mod-
els suitable for distant microphone automatic speech recognition.
Our goal is to investigate, how the performance of a system trained
on a combination of close-talking and distant microphone data can
be optimized, while assuming as little information about the con-
figuration of (multiple) distant microphones as possible, to avoid
guesstimates and lengthy calibration runs.

We evaluated our system in NIST’s RT-04S “Meeting” speech-
to-text evaluation, where speech data was recorded at several sites
with a varying number of different table-top microphones, but not
with microphone arrays. Body-mounted microphones provide base-
line numbers for distant ASR performance and allow for compar-
isons of meeting speech with other spontaneous speech data.

1. INTRODUCTION

An important effort in current speech research is focused on the
processing of speech from natural multi-party interaction, aka “Meet-
ings”, which presents a number of new challenges in terms of style
(highly interactive), segmentation (overlapping) as well as difficult
recording condition(s). Data gathered during meetings provides an
interesting testbed for work on robust automatic speech recogni-
tion, speaker detection, segmentation and tracking, discourse mod-
eling, and many more. Ideally, automatic systems working on
these tasks operate on data recorded from distant microphones,
freeing users from the need to wear body-mounted microphones.
As specialized microphone arrays will not be available in many
cases, research should investigate speech recorded through room
microphones, which could for example be built into hands-free
telephone sets or other mobile units.

In this paper, we present the current Interactive Systems Lab’s
speech-to-text system for “Meeting”-type speech, which was eval-
uated in NIST’s RT-04S “Meeting” evaluation [1, 2, 3]. The focus
of this paper is on the rationale behind some of the design deci-
sions and the experiments with the core speech-to-text system for
(multiple) distant microphones.

2. THE “MEETING” SCENARIO AND DATA

“Meeting” data used in this work mainly consists of group meet-
ings in a professional or research environment, where participants
were usually seated around a table. As the meetings occured natu-
rally, they contain spontaneous effects and sloppy speech, although
the amount varies among the four collection sites CMU, ICSI,
LDC, and NIST. Recordings were done with individual and dis-
tant microphones.

2.1. Training Data

Training data was available from three sites in 16kHz, 16bit qual-
ity, see table 1. The CMU data was recorded with lapel micro-
phones, while the other groups used head-sets. Although the lay-
out differed between sites, the distant microphones were generally
of table-top, omni-directional type roughly distributed along an
axis on the middle of the conference table. The NIST data contains
directional microphones as well. No training data was collected at
LDC, we also disregard the “Mock-PDA” data from ICSI.

Corpus Duration # Meetings # Speakers # Channels

CMU 11h 21 93 0
ICSI 72h 75 455 4
NIST 13h 15 77 7

Table 1. Meeting training data: all data sets contain recordings of
individual speakers with personal microphones in addition to the
above number of distant microphone recordings.

Pointers to these corpora as well as descriptions of their prop-
erties are available on the RT-04S web-site [1], the data is available
through LDC. For training our recognizer, we merged these cor-
pora with 180h of Broadcast News data from the 1996 and 1997
training sets. For language modeling, we also added the transcrip-
tions for 360h of Switchboard data from phases I, II, “Cellphone”
and “C-Tran”.

2.2. Development and Test Data

Three evaluation conditions were defined for RT-04S:

MDM Multiple Distant Microphones (primary)

SDM Single Distant Microphone (optional)

IHM Individual Head-set Microphone (required contrast)

The same meeting can therefore be processed several times
using different amounts of information. Development data for the
RT-04S evaluation consisted of 10-minute excerpts of eight meet-
ings, two per site. Eight 11-minute excerpts of different meetings
(two per site) were used for evaluation. Each meeting has between
three and ten participants while the number of distant channels
varied between one (CMU) and ten (some LDC meetings).

For the distant microphone conditions, crosstalk regions, roughly
three quarters of the data, are labeled in the reference transcriptions
and excluded from scoring. The respective manual segmentation
was derived from these transcriptions and the resulting segments

I - 9890-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



only contain non-crosstalk regions. The SDM condition can be de-
rived from the MDM condition by disregarding all but one “cen-
tral” distant channel for every meeting.

3. SYSTEM DESIGN

3.1. Automatic Segmentation and Clustering

Speaker segmentation and clustering consists of identifying who
spoke when in a long meeting conversation. Ideally, the process
will discover how many people are involved in the meeting, and
output clusters corresponding to an unique speaker each. This in-
formation is needed for speaker adaptation in multi-pass decod-
ing as well as higher-level processing. This paper presents results
on the RT-04S development data using manual and automatic seg-
mentation.

Our system uses CMUseg 0.5 and a hierarchical, agglomer-
ative clustering algorithm [4, 5]; in this work we use a common
segmentation for SDM and MDM conditions.

3.2. Language Model Training

Language Model Overall CMU ICSI LDC NIST

SWB-3G 54.8 65.0 47.1 57.4 54.3
Meeting-3G 53.4 64.9 41.3 60.7 53.4
Merged-3G 52.4 63.7 42.6 55.9 53.4
3-fold Interpolated 51.6 63.7 41.5 55.8 51.4

Table 2. Language Model development: word error rate in % on
“SDM” condition using baseline Switchboard acoustic models.

Language models were trained in analogy to our RT-03S Switch-
board system [6], see table 2. We trained a standard 3-gram LM
and a 5-gram LM with ∼800 automatically deduced classes on
a mixture of the Switchboard and Meeting transcriptions, as we
considered these to be similar in style. We also trained a 4-gram
Broadcast News LM. All LMs were computed over a vocabulary of
∼47k words, which resulted in an OOV rate of 0.6% on the devel-
opment set. Distant speech decodings were run with the merged
3-gram LM. Confusion Network generation/ combination passes
use a context-dependent interpolation of all three LMs, which was
also directly used in the IHM decodings. The perplexity on the de-
velopment set of the 3-fold interpolated LM was 112. We did not
add data downloaded from the web or adapt the models to meeting
or site, although they were very different in topic and style.

3.3. Acoustic Model Training

The 16kHz recognizers used in these experiments work in a 42-
dimensional feature space based on MFCCs with CMS and CVN
applied on a per-utterance basis. We use a ±7 frames context win-
dow before applying separate LDA and global STC transforms [7].
No specific noise-filtering has been employed for distant data.

Our first experiments were run with a 2k codebooks, 6k distri-
bution, 100k diagonal Gaussians system trained on BN96 training
data only. Initial word error rate on Meeting data (“SDM” condi-
tion, i.e. one, central channel only; manual segmentation) is 62.8%
with VTLN, using both model-space and feature-space MLLR we
reach 59.9%.

Experiments with the “Switchboard” recognizer were conducted
with a simplified, 3-pass version of ISL’s system described in [6],
which reaches a word error rate of 25.0% on the RT-03S “Switch-
board” test set. For the Meeting experiments, speech was down-
sampled and passed through a telephony filter. A first-pass de-
coding using completely unadapted models results in a word error
rate of 64.2%, a VTLN system adapted with both model-space and
feature-space MLLR reaches 56.4% word error rate.

Using cross-adaptation between the two systems, it was possi-
ble to reduce the error rate to 52.3%, using the Switchboard system
for the final pass.

As our Switchboard system had been trained on∼360h of tele-
phony speech only and the combination of BN and Meeting data
would yield ∼300h of close-talking or BN speech plus about the
same amount of in-domain distant speech, we decided to re-train a
16 kHz system from scratch.

Training Pooled BN96/97 ICSI CMU NIST
Test (%WER) (180h) (75h) (11h) (13h)

CMU 72.3 71.9 70.6 71.9 74.0
ICSI 60.2 62.2 59.9 63.0 67.2
LDC 67.9 68.2 69.1 71.8 76.6
NIST 71.4 72.7 75.2 72.9 75.8
Overall 66.7 67.5 67.2 68.9 72.6

Table 3. Results of training a “SDM” system on the different data
sets: pooling BN and Meeting data improves robustness.

To see if merging the data was indeed a viable approach, we
trained simple systems of equal size on different portions of close-
talking data and tested these on the central channel of the distant
Meeting development test. Results are summarized in table 3. It is
interesting to note that the “CMU” system performs significantly
better on the distant data than the “NIST” system with also little
training data. We attribute this effect to the use of lapel micro-
phones, which capture more room acoustics.

Two extra iterations of Viterbi training of the “ICSI”-trained
system on all four high-quality channels of the ICSI distant micro-
phone data resulted in a word error rate of 62.5%, an improvement
of 5% absolute. Employing feature space normalization (constrained
MLLR) [8] and VTLN during testing only reaches 58.6%. Alter-
natively we performed a combination of channel-adaptive (CAT)
and speaker-adaptive (SAT) training also using constrained MLLR
[9], by estimating a separate normalization matrix for every speaker
and every recording channel. This resulted in a word error rate
of 54.5%, which is a 8% absolute (13% relative) gain. Perform-
ing SAT alone on the close-talking data did not significantly de-
crease word error rate. Estimating the adaptation parameters of
the SAT/CAT system on the previously best hypotheses (52.3% of
the SWB system) yields an error rate of 51.4% with roughly a third
of the parameters.

As a next step, we re-trained the context decision tree on the
combined data sets, increased the model complexity to 6k code-
books, 24k distributions,∼300k Gaussians assigned by the Merge-
and-Split algorithm while also re-training STC. Re-running the
close-talking and distant speech training with these extra param-
eters, while also adding the NIST distance data to the second step
reduced the error rate by an extra 3.5% absolute, and the best per-
formance was delivered by a system using newly trained models
alone; no further improvement was possible using cross-adaptation

I - 990

➡ ➡



with SWB models.
The experiments reported so far were run and scored on a pre-

release of the official RT-04S development data set, which could
not accomodate the Multiple Distant Microphone (MDM) condi-
tion. Due to changes to both transcripts and data, absolute error
rate cannot be compared before and after this point; quantitative
assessments of different methods’ merits however are unaffected
and valid.

4. RESULTS

4.1. Single Distant Microphone

Experimentation with adaptation and decoding with the above setup
led to the following decoding strategy, where second- and third-
pass models were adapted with model-space and feature-space MLLR
using the hypothesis generated in the preceeding step. A single de-
coding pass takes less then 5 RTF on a 3GHz Pentium4 machine,
memory consumption is typically 250Mb when ignoring the foot-
print of cached audio data.

PLAIN Merge-and-Split training followed by Viterbi (2i) on
the close-talking data only, no VTLN

SAT/CAT-noVTLN ≡ PLAIN with extra SAT/ CAT Viterbi (4i) training
on the distant data, no VTLN

SAT/CAT ≡ SAT/CAT-noVTLN, but trained with VTLN

CNC Confusion Network Combination

Models Segmentation
Manual Automatic

PLAIN 59.5 60.8
SAT/CAT-noVTLN 53.2 55.2
SAT/CAT 48.9 53.1
CNC 47.8 51.5

Table 4. Decoding results (%WER) on the RT-04S development
set, SDM condition, CNC is between the last two passes.

Confusion Networks [10] were generated from the union of
different lattices, where confidences were computed separately on
the individual lattices after pruning. Here, we are combining lat-
tices from the last two decoding passes.

4.2. Individual Microphones

For comparison, we also report results for our close-talking sys-
tem. For the IPM condition, we used a simplified 3-pass version
of the Switchboard system [6] together with several close-talking
Meeting models:

PLAIN ≡ first pass of SDM case

SAT/CAT ≡ third pass of SDM case

Tree6.8ms Tree6 Switchboard MLE-SAT AM, decoded with 8ms
frame shift

Tree150.8ms Tree150 Switchboard MMIE-SAT AM, cross-adapted
on Tree6, decoded with 8ms frame shift

SAT/CAT.8ms ≡ SAT/CAT, cross-adapted on Tree6, decoded with
8ms frame shift

Models Segmentation
Manual Automatic

PLAIN 39.6 43.6
SAT/CAT 33.8 38.8
Tree6.8ms 30.8 35.0
Tree150.8ms 29.9 34.2
SAT/CAT.8ms 30.2 35.3
CNC 28.0 32.7

Table 5. Decoding results (%WER) on the RT-04S development
set, IPM condition

On the close-talking data, using three different acoustic mod-
els (one 16kHz, two 8kHz with different optimization criteria) and
adapting these on each other leads to a large reduction in word
error rate, which is again significantly reduced by Confusion Net-
work Combination (here between last three passes).

4.3. Multiple Distant Microphone (MDM) Condition

The decoding and adaptation strategy for the MDM condition uses
the same models and the same decoding setup as the SDM case,
but after every decoding step, CNC was performed over all chan-
nels (one to eight, depending on site) processed in the last step.

Models Segmentation
Manual Automatic

PLAIN 53.4 (59.8) 54.4 (60.8)
SAT/CAT-noVTLN 46.6 (50.7) 48.5 (51.9)
SAT/CAT.8+10ms 43.3 (47.7) 45.5 (51.5)
CNC 42.8 45.0

Table 6. Decoding results (%WER) on the RT-04S development
set, MDM condition; the number in brackets is the performance of
a single channel without CNC.

Computing Confusion Networks at the initial 60% word error
rate immediately reduces word error rate by more than 10% rela-
tive over the whole data set, which includes 25% data with only
one channel (CMU). The possibility to adapt on this hypothesis
leads to a gain of approximately 1.5% absolute in single-channel
word error rate for the SAT/CAT pass. The gain is more pro-
nounced for the automatic segmentation case. Final CNC is be-
tween last two passes and multiple channels including decodings
with different frame rate.

4.4. Summary and Comparison

Segmentation for the IPM condition proved surprisingly difficult,
as we observe a 14.7% deletion rate, which is nearly as high as
the one for the SDM case (16.7%). Manual segmentation has a
deletion rate of 9.8%, see table 7. In many meetings, significant
amounts of speech from non-primary talkers can be found in the
IHM recordings, which makes trade-off between insertions and
deletions difficult to optimize without hand-tuning. The recog-
nizer’s performance broken down according to data collection site
is shown in table 8.

To further improve system performance for the distant micro-
phone case, we tried adapting our recognizer to whole meetings
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Condition SUB DEL INS WER

IHM 16.0 15.1 9.8 14.7 2.2 2.9 28.0 32.7
SDM 27.8 30.7 17.4 16.7 2.6 4.1 47.8 51.5
MDM 24.1 25.8 16.4 15.9 2.3 3.3 42.8 45.0

Table 7. Error distribution for the three conditions in the RT-04S
“Meeting” task. Left number in column is with manual segmenta-
tion, right number is automatic segmentation.

%WER IHM SDM MDM
Segm.: Man. Auto. Man. Auto. Man. Auto.
CMU 39.6 43.0 59.8 63.4 60.7 62.9
ICSI 16.2 20.4 32.5 36.5 27.5 30.1
LDC 28.9 33.3 52.9 56.3 48.1 48.9
NIST 28.2 35.0 57.0 60.7 44.5 47.9
Overall 28.0 32.7 47.8 51.5 42.8 45.0

Table 8. Word error rates for the individual sites making up the
RT-04S development data. CMU is most difficult in all conditions,
indicating it has spontaneous speech and only one distant channel.
Channel combination significantly reduces word error rate for ICSI
(which represents a large part of training data), LDC; and NIST.

(generally longer than 60 minutes) instead of only the evaluation
part. Presumably due to the quality of the automatic segmenta-
tion, this did not lead to a gain in performance. A diagnostic ex-
periment, in which we “filtered” automatic segmentation with the
best-matching true speaker segments, so that each cluster would
only be adapted on the speech of one speaker, did also not increase
performance, as only little adaptation data survived after filtering.
Unfortunately, the whole meetings have not yet been manually
segmented.

In our training experiments, we achieved best results with acous-
tic models seeded with pooled close-talking data and then trained
in a normalized feature space on parallel recordings of distant speech.
For combining several distant channels during decoding, we achieved
best results with Confusion Network Combination. A particu-
lar advantage of this approach over Array Processing (a simple
form of delay&sum beamforming to compensate for time skew
and sound travel delays) or Multi-Stream processing (evaluating
acoustic models separately for each channel and using the aver-
aged log-likelihood during beam-search) is the robustness of the
gains, as no assumption on microphone type, recording location
and relative position of speaker and microphone is necessary. The
latter two approaches, in our experiments, did not significantly re-
duce word error rate without strong “educated guesses” about rea-
sonable channels and parameters for combination.

5. CONCLUSION

ISL’s primary “sttul” submissions to the NIST’s RT-04S “Meet-
ing” evaluation as presented in this paper gave excellent results
and reached a word error rates of 35.7%, 49.8%, and 44.9% for
the IHM, SDM, and MDM conditions respectively on the evalua-
tion set.

The results demonstrate a significant improvement over pre-
vious “Meeting” systems, particularly when using multiple distant
microphones not arranged as a microphone array. We are already

using an improved version of the “SDM” SAT/CATno-VTLN sys-
tem for realtime speaker-independent topic spotting around an “aug-
mented table” with very good results. As keywords appear fre-
quently and repeatedly in this application, cross-talk is not such
a significant problem here. Distant speech “Meeting” recogni-
tion, and the problems it poses in the areas of segmentation and
clustering, robust pre-processing, acoustic modeling, and channel
combination, as well as language modeling and natural language
processing however remains a challenging task for future research.
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