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ABSTRACT

Recently, we proposed two improvements to the eigenvoice (EV)
speaker adaptation using kernel methods: kernel eigenvoice (KEV)
speaker adaptation, and embedded kernel eigenvoice (eKEV) speaker
adaptation. In both KEV and eKEV adaptation methods, ker-
nel eigenvoices are computed using kernel PCA, and an implicit
speaker adapted model is defined as a linear combination of the
leading kernel eigenvoices in the kernel-induced feature space.
eKEV adaptation further finds an approximate pre-image of the
implicit speaker adapted model so that all online kernel evalua-
tions involving any acoustic vectors are eliminated during adapta-
tion and subsequent recognition. The pre-image finding algorithm
is cast as a constrained optimization problem using the distances
between the expected pre-image and a set of pre-determined ref-
erence speakers as constraints. In this paper, we investigate two
different ways to determine the reference speakers and the effect
of their numbers on the eKEV adaptation performance.

1. INTRODUCTION

Adaptation methods like the Bayesian-based MAP adaptation [1]
and the transformation-based MLLR adaptation [2] have been pop-
ular for many years. Nevertheless, when the amount of available
adaptation speech is really small — say, only a few seconds —
the more recent eigenvoice-based adaptation method is found par-
ticularly more effective. The basic idea of the eigenvoice (EV)
adaptation method [3] is to derive from a diverse set of speakers
a small set of basis vectors called eigenvoices that are believed to
represent different voice characteristics (e.g. gender, age, accent,
etc.); any training or new speaker is then a point in the eigenvoice
subspace. In practice, since the number of estimation parameters
is greatly reduced, fast speaker adaptation using EV adaptation is
possible with a few seconds of speech.

Recently, we proposed two improvements to the EV adap-
tation called kernel eigenvoice (KEV) speaker adaptation [4, 5]
and embedded kernel eigenvoice (eKEV) speaker adaptation [6],
which exploit possible nonlinearity in the speaker supervector space
using kernel methods [7]. The basic idea is to map speaker super-
vectors to a high dimensional feature space via some nonlinear
map, and then apply principal component analysis (PCA) there to
derive the eigenvoices in the feature space. During the actual com-
putation, the exact nonlinear map need not be known, and the ker-
nel eigenvoices are obtained by kernel PCA. Then a new speaker’s
adapted model is constructed implicitly as a linear combination of
the leading kernel eigenvoices in the feature space. eKEV adapta-

tion further projects the implicit speaker adapted (SA) model back
to the input speaker supervector space by finding an approximate
pre-image of the SA model. Thus, unlike KEV adaptation which
only produces an implicit SA model in the kernel-induced feature
space, eKEV adaptation produces an explicit speaker supervector
for the adapting speaker so that all online kernel evaluations in-
volving adaptation or testing speech are eliminated. As a conse-
quence, both adaptation and recognition speeds of eKEV adapta-
tion are faster than that of KEV adaptation. In fact, the recognition
speed of eKEV adaptation is as fast as normal HMM decoding.
In an TIDIGITS adaptation task, eKEV adaptation was shown to
outperform a speaker-independent model by about 40% using less
than 10s of adaptation speech, and was better than EV, KEV, MAP,
and MLLR adaptation [6].

In eKEV adaptation, the finding of the pre-image of the speaker
adapted model in the kernel-induced feature space is cast as a con-
strained optimization problem using the distances between the ex-
pected pre-image and a set of pre-determined reference speakers
as constraints, and the optimal pre-image is solved in the least-
square sense1. This paper investigates two ways to define the set
of reference speakers as well as the effect of their numbers on the
performance of eKEV adaptation.

2. REVIEW OF THE EMBEDDED KERNEL
EIGENVOICE SPEAKER ADAPTATION (EKEV)

The eKEV adaptation method is illustrated in Fig. 1. In the fig-
ure, all the five training speakers are used to derive eigenvoices
in the kernel-induced feature space by kernel PCA. The implicit
speaker-adapted model ϕ(s

(ekev)
x ) is restricted to the kernel eigen-

voice subspace of the feature space, and its (approximate) pre-
image s

(ekev)
x is found by using its distance constraints from a set

of three reference speakers x1 – x3.
The procedure is outlined briefly step-by-step as follows; the

details can be found in [6].

STEP 1: Construction of Speaker Supervectors

Suppose there are N speaker-dependent (SD) hidden Markov mod-
els (HMMs) of the same topology with R mixture Gaussians. For
each speaker, say, the ith speaker, a speaker supervector xi is con-
structed by concatenating all his HMM Gaussian mean vectors

1It is analogous to finding the location of an object using a set of global
positioning system satellites.
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Fig. 1. The eKEV adaptation method. (Without the pre-imaging step, it is the KEV adaptation method.)

xir∈ R
n1 , r = 1, . . . , R. That is, xi = [x′

i1, . . . ,x
′
iR]′∈ R

n2

and n2 = n1R.

STEP 2: Variance Normalization

Normalize each constituent of any speaker supervector x by its
own covariance. The normalized model of x is represented by
y = C− 1

2 x where

C =

2
6664

C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 0 CR

3
7775 .

Similarly, the new speaker adapted model will be represented by
s
(ekev)
x in the original speaker supervector space, and s

(ekev)
y in

the normalized speaker supervector space.

STEP 3: Computation of Kernel Eigenvoices

Let’s use the following direct sum composite kernel

k(yi,yj) =
RX

r=1

ϕr(yir)
′ϕr(yjr) =

RX
r=1

kr(yir,yjr) , (1)

which is associated with a mapping ϕ that maps y in the nor-
malized input speaker supervector space Y to ϕ(y) in the kernel-
induced feature space F . Compute the centered kernel matrix K̃
with K̃ij = ϕ̃(yi)

′ϕ̃(yj) (where ˜ is used to represent a quan-
tity centered around its centroid throughout this paper). Kernel
PCA is performed by eigendecomposition on K̃ as K̃ = UΛU′,
where U = [α1, . . . , αN ] with αi = [αi1, . . . , αiN ]′, and Λ =
diag(λ1, . . . , λN). Then the mth orthonormal kernel eigenvoice in
F is given by [8] as vm =

PN
i=1

αmi√
λm

ϕ̃(yi) , m = 1, . . . , M.

STEP 4: Similarity between the New Speaker and a Training
Speakers in the Feature Space

The adapted speaker model ϕ̃(s
(ekev)
y ) is a linear combination of

the M leading kernel eigenvoices in F . That is,

ϕ̃(s
(ekev)
y ) =

MX
m=1

wmvm =
MX

m=1

NX
i=1

wmαmi√
λm

ϕ̃(yi) . (2)

And its rth constituent is given by

ϕ̃r(s
(ekev)
yr ) =

MX
m=1

NX
i=1

wmαmi√
λm

ϕ̃r(yir) . (3)

Hence, we get

kr(s
(ekev)
yr ,yjr) = Ar(j) +

MX
m=1

wm√
λm

Br(m, j) , (4)

where
Ar(j) =

1

N

NX
i=1

kr(yir,yjr) , (5)

and

Br(m, j) =
NX

i=1

αmi (kr(yir,yjr) − Ar(j)) . (6)

STEP 5: Finding the Distances of all Reference Speakers from
Their Centroid in the Input Space

Without loss of generality, let the column vectors of Y = [y1, . . . ,yn]
be the n reference speakers. Singular value decomposition (SVD)
of the centered Y gives

Ỹ = U2Λ2V
′ = U2Z , (7)

where Z = [z1, . . . , zn] and its columns, say, zi, are the pro-
jections of yi onto the eigenvectors of U2. Collect ‖zi‖2, i =
1, . . . , n, into an n-dimensional vector,

d0 = [‖z1‖2, ‖z2‖2, . . . , ‖zn‖2]′ ∈ R
n . (8)

STEP 6: Finding the Distance Constraints between the New
Speaker and the Reference Speakers in the Input Space

Let dj be the squared Euclidean distance between s
(ekev)
y and yj

in the input space, and each constituent kernel be a Gaussian ker-
nel, then we have

kr(s
(ekev)
yr ,yjr) = e−βr‖s

(ekev)
yr −yjr‖2

⇒ dj = −
RX

r=1

1

βr
log kr(s

(ekev)
yr , yjr) . (9)
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These distances are collected into the vector

d(w) = [d1, d2, . . . , dn]′ ∈ R
n . (10)

STEP 7: Finding the Distance Gradients

Differentiating d of Eqn. (9) w.r.t. wm, we get

∂dj

∂wm
= − 1√

λm

RX
r=1

Br(m, j)

βrkr(s
(ekev)
yr (w),yjr)

, j = 1, . . . , n . (11)

STEP 8: Finding the Pre-image

From [9], the optimal pre-image that satisfies the distance con-
straints in d in the least-square sense is given by

s
(ekev)
x (w) = C

1
2 s

(ekev)
y = C

1
2 (Pd(w) + q) , (12)

where

P = −1

2
U2Λ

−1
2 V′ and q = −Pd0 + ȳ . (13)

STEP 9: ML Estimation of Kernel Eigenvoice Weights

A maximum likelihood estimation of w may be found by maxi-
mizing the following Q(w) function:

Q(w) = −
RX

r=1

TX
t=1

γt(r)‖ot − s
(ekev)
xr (w)‖2

Cr
, (14)

where γt(r) is the posterior probability of the observation sequence
O = {o1, . . . ,oT } being at the rth Gaussian at time t; s(ekev)

xr is
the rth constituent of the new speaker’s model.

Differentiating Q(w) w.r.t. each eigenvoice weight and using
the distance gradients of Eqn. (11), the derivatives of Q(w) can be
readily obtained. These derivatives are nonlinear in w and there
is no closed form solution for the optimal ŵ. the Gradient Ascent
algorithm is used to search for the optimal eigenvoice weights in-
stead.

3. DIFFERENT METHODS TO DETERMINE THE
REFERENCE SPEAKERS

The computation of the pre-image relies on its distances to a set of
reference speakers. In the reference paper of the pre-image find-
ing method [9], the neighbors of a de-noised image in the feature
space are used as the reference speakers. However, in our problem,
the whereabout of the speaker-adapted (SA) model is not known
beforehand — neither in the kernel-induced feature space, nor in
the input supervector space — and so are the locations of its neigh-
bors. Here, we investigate two ways to determine the initial set of
reference speakers of the SA model to be found.

3.1. SI Neighbors

If there is no additional information, it is reasonable to start with
the neighbors of the speaker-independent (SI) model since the adap-
tation starts its search from the SI model. The neighbors can be
computed using the Euclidean or Mahalanobis distances. One ad-
vantage of using SI neighbors is that since they are fixed, they can
be computed once beforehand and applied to all adapting speakers.

3.2. Maximum Likelihood (ML) Neighbors

Conceptually, since we are using the ML for determining the SA
model, it should be close to those training speakers that also have
high likelihood of the adaptation data. Since the ML neighbors are
dependent on the adaptation speech, they vary across adaptation
sessions and must be computed online.

3.3. Number of Reference Speakers

Another issue about the reference speakers is how many of them
are adequate. The current pre-image finding algorithm uses the
distances from the reference speakers of a neighborhood to exploit
localized information to constrain the solution space. If there are
too few reference speakers, the distance constraints may be too
weak to lead to a good pre-image solution. However, if too many
reference speakers are included, those that are far away will domi-
nate the distance constraints, and weaken the localized information
for the determination of the pre-image.

4. EXPERIMENTAL EVALUATION

The proposed two reference speakers determination methods for
eKEV adaptation method were evaluated on the TIDIGITS speech
corpus [10]. There are 163 speakers in each of its standard training
set and test set.

4.1. Acoustic Models

Twelve MFCCs and the normalized energy were extracted from
each speech frame of 25 ms at every 10 ms. Each of the 11 digit
models was a strictly left-to-right HMM comprising 16 states and
with a single diagonal covariance Gaussian per state. Thus, the
dimension of the acoustic vectors is n1 = 13 and that of the
speaker supervector space n2 is 11 × 16 × 13 = 2288. In ad-
dition, there were a 3-state “sil” model and a 1-state “sp” model
to capture silence speech and pauses between digits respectively.
Furthermore, the SD HMMs shared the transition probabilities and
Gaussian variances learned in the SI HMMs.

The word accuracy of the baseline SI model on the test data is
96.25%2.

Table 1. Effect of different reference speakers (#neighbors = 10).

Amount ML SI Neighbors
of Data Neighbors Euclidean Mahalanobis

2.1s 97.41 96.33 96.52
4.1s 97.53 96.43 96.60
9.6s 97.58 96.50 96.68

2The word accuracy of our SI model is lower than the best reported
result on TIDIGITS which is about 99.7%. The main reasons are that we
used only 13-dimensional static cepstra and energy, and each state was
modeled by a single Gaussian with diagonal covariance. The use of this
simple model allowed us to run many experiments with very short adap-
tation speech. We are now working on its extension to HMM states of
Gaussian mixtures.
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Fig. 2. Effect of the number of reference speakers (ML neighbors)

4.2. Experiments

Supervised adaptation was carried out using 5, 10, and 20 digits,
which correspond to an average of 2.1s, 4.1s, and 9.6s of adap-
tation speech. To improve statistical reliability of the results, all
results were the average of 5-fold cross-validation over all 163 test
speakers.

Parameters Initialization

The eKEV adaptation method employs the iterative Gradient As-
cent algorithm to compute the (locally) optimal eigenvoice weights
in each maximization step of the GEM algorithm. Some system
parameters were initialized as follows:

• The initial eigenvoice weights were the projections of the
SI model onto the corresponding kernel eigenvoices.

• βr = β = 0.0005 for r = 1, . . . , R.

• The learning rate for Gradient Ascent was 0.0001.

• The number of kernel eigenvoices M was fixed to 7.

Experiment 1: Reference Speakers Determination Methods

The results of different types of reference speakers on the perfor-
mance of eKEV adaptation method is shown in Table 1. The num-
ber of neighbors were fixed to 10 for this investigation. From the
results, we find that the use of ML neighbors outperforms the use
of SI neighbors by about 1% absolute or 25% relative. It indeed
seems that the final SA model is closer to its ML neighbors than
the SI neighbors. Since there can be many local maxima in the so-
lution of the gradient method, we hypothesize that a good initial-
ization of its neighborhood to the ML neighbors may have avoided
the method from being trapped in a poorer local maximum around
the SI neighbors. We had run additional iterations and updated the
ML neighbors of the SA model found to its actual neighbors (as
determined by the Mahalanobis distances), but it was found that
most of the neighbors remained unchanged, and the final model
had very similar performance as the SA model obtained without
the neighbor updates.

Experiment 2: Number of Reference Speakers

Fig. 2 shows the performance of eKEV adaptation using different
numbers of ML neighbors as the reference speakers. It is observed
that for this problem, 3 to 8 ML neighbors give good results, and
the best performance is obtained with 5 ML neighbors. In practice,
the optimal number of reference speakers may be determined by
cross-validation. It is also good to know that a small number of
reference speakers is adequate as this will mean less computation
during eKEV adaptation as well.

5. CONCLUSIONS

In this paper, we investigate the use of SI neighbors and ML neigh-
bors to determine the set of reference speakers needed in the pre-
image finding algorithm of our new eKEV speaker adaptation method.
The former are neighbors of the speaker-independent (SI) model,
and the latter are those training speakers that have the highest like-
lihoods of the adaptation data. In a TIDIGITS adaptation task,
eKEV adaptation using ML neighbors outperform eKEV adapta-
tion using SI neighbors by about 1% absolute or 25% relative. It
is also found that the number of reference speakers affects the re-
sults. Too many reference speakers are not recommended; instead
it is better to use a few speakers of good localized constraints (e.g.
ML neighborhood).
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