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ABSTRACT 
In this paper, we present a rapid and discriminative speaker 
adaptation algorithm for speech recognition. The adaptation 
paradigm is constructed under the popular linear regression 
transformation framework. Attractively, we estimate the 
regression matrices from the speaker-specific adaptation data 
according to the aggregate a posteriori criterion, which can be 
expressed in a form of classification error function. The goal of 
proposed aggregate a posteriori linear regression (AAPLR) turns 
out to estimate the discriminative linear regression matrices for 
transformation-based adaptation so that the classification errors 
can be minimized. Different from minimum classification error 
linear regression (MCELR), AAPLR algorithm ha closed-form 
solution to achieve rapid speaker adaptation. The experimental 
results reveal that AAPLR speaker adaptation does improve 
speech recognition performance with moderate computational 
cost compared to the maximum likelihood linear regression 
(MLLR), maximum a posteriori linear regression (MAPLR) and 
MCELR. 

1. INTRODUCTION 
In general, the hidden Markov model (HMM) parameters are 
trained using two categories of approaches: the distribution 
estimation and the discriminative training. The popular 
algorithms for distribution estimation are based on maximum 
likelihood (ML) and maximum a posteriori (MAP) criteria [6]. 
Also, the criteria for discriminative training are using the 
minimum classification error (MCE) [8] and the maximum 
mutual information (MMI) [1]. Using MCE discriminative 
training criterion, the generalized probabilistic descent (GPD) 
algorithm is applied to iteratively learn the model parameters. 
However, it is time-consuming to fulfill iterative GPD algorithm. 
In this study, we focus on developing a rapid and discriminative 
algorithm for speaker adaptation. We would like to adapt the 
existing HMM parameters to a new speaker and his/her 
operating environments so as to improve the speech recognition 
performance. In the literature, the linear regression adaptation 
using MLLR [9] and MAPLR [3][5] is popular and shown to be 
effective. Here, we concern the issue of discriminative 
adaptation where the likelihoods from target HMM’s as well as 
that from competing HMM’s are considered to determine the 
most likely regression matrices. The adaptation performance can 
be significantly improved. To avoid extensive computation, our 
goal is to derive closed-form regression matrices for rapid 
adaptation. 

The discriminative training algorithm based on MCE 
criterion has been applied to speaker adaptation [2][12]. The 
adapted speech models are discriminative so as to reduce the 

classification error rates. In [2], the MCE criterion was merged 
to perform the linear transformation and estimate the time-
varying polynomial Gaussian mean functions for the trended 
HMM. This approach was called minimum classification error 
linear regression (MCELR). Although the speech recognition 
performance was improved, the major weakness came from the 
heavy computational cost. To compensate this weakness and 
reinforce the adaptation robustness, we properly incorporate the 
prior density of linear regression model and conduct the 
Bayesian model estimation. Interestingly, we present the 
aggregate a posteriori linear regression (AAPLR) where the 
aggregate a posteriori probability [10] is maximized to find the 
optimal regression matrices. A closed-form solution to AAPLR 
is derived to achieve fast and discriminative speaker adaptation. 
For comparison, we carry out different linear regression 
adaptation algorithms in the experiments.

2. RELATED ALGORITHMS 
Before describing the new discriminative transformation-based 
adaptation algorithm, we are introducing the MCE criterion and 
the linear regression adaptations using MLLR, MAPLR and 
MCELR. 

2.1. MCE Criterion 
Juang et al. [8] presented the MCE criterion with a three-step 
procedure. For the case of M-category classification, the first 
step is to determine the discriminant functions 
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where η  is a positive number and }{ mλ=Λ  is the model 

parameter. This function is continuous and flexible with varying 
η . Notably, all competing classes mj ≠  are considered during 

parameter learning. At the third step, the loss function measuring 
the classification errors is formulated by 
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The sigmoid function )(⋅l  has parameters γ  and θ . In (1), the 

positive value of )(Xd m  reflects the misclassification while 

0)( <Xd m  implies the correct classification. Then, the 

generalized probabilistic decent algorithm is developed to 
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iteratively fulfill the MCE criterion. The learning algorithm of 
Λ  is given by 

);(1 iii XlU Λ∇−Λ=Λ + ε .                          (3) 

Here, i  is the iteration index, X  are the training samples, U  is 
the positive definite matrix and ε  is the learning rate. This 
paper concerns the discriminative linear regression adaptation 
rather than discriminative HMM training. In what follows, we 
are describing several variants of linear regression adaptation 
and the conceptual evolution from MCE discriminative training 
to proposed discriminative linear regression adaptation. 

2.2. MLLR, MAPLR and MCELR 
The linear regression speaker adaptation aims to estimate the 
cluster-dependent regression matrices, which are used to 
transform/adapt the speaker-independent HMM parameters to a 
new speaker. By properly controlling the sharing of regression 
matrices, MLLR can effectively find the maximum likelihood 
estimate of regression matrices for adaptation of HMM mean 
vectors. Assume that a HMM distribution of mλ  having 1×D

mean vector mµ , the adapted mean vector mµ̂  using 

)1( +× DD  regression matrix )(mrW  is expressed by 

mmrm ξµ )(ˆ W= .                                   (4) 

Here, D  is feature dimension, )(mr  is the regression/cluster 

class of HMM label m  and mξ  is the extended mean vector 

[ ]TT
mm µξ ,1= . The maximum likelihood estimate of regression 

matrices }{ML r(m)WW =  using adaptation data X  is 

determined by 
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W
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The expectation-maximization (EM) algorithm can be applied to 
find the optimal MLW . The regression matrices are calculated 

through solving a system of linear equations [9]. 
Further, when the amount of adaptation data is sparse, the 

estimated regression matrices are biased. It is helpful to achieve 
desirable adaptation performance by constraining the 
distribution shape of regression matrices using prior densities. In 
[3][5], the matrix-variate normal density served as the prior 
distribution for W  so as to perform the maximum a posteriori 
estimation 

)(),(maxarg),(maxargMAP WWWW
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The prior distribution of a regression matrix is defined by 
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where dm  and dΣ  are mean vector and covariance matrix for 

dth row of regression matrix dw , respectively and ∆  is a block 

diagonal matrix ),,diag( D1 ΣΣ K . Usually, q  is an exponential 

function. The resulting maximum a posteriori linear regression 
(MAPLR) has better adaptation performance than MLLR. 

In [2], Chengalvarayan proposed the minimum classification 
error linear regression (MCELR) adaptation algorithm where the 
parameters of global regression matrix were estimated according 
to the GPD algorithm. Wu and Huo [12] further performed 
MCELR adaptation using multiple regression classes. In general, 
the learning algorithm of W  is similar to (3). Having the overall 

loss function );( iXl W  due to current regression matrices 
iW , the updating of W  is done iteratively by 

);(1 iii Xl WWW ∇−=+ ε .                         (8) 

3. AGGREGATE A POSTERIORI CRITERIA 
Subsequently, we are introducing the generalized minimum error 
rate (GMER) [10] criterion, which was proposed for 
discriminative training and done by Li and Juang. An aggregate 
a posteriori (AAP) probability was defined and rearranged to fit 
the formula of classification error criterion for discriminative 
training. Under certain assumptions, a closed-form solution to 
HMM training was obtained. Such solution allows us to perform 
efficient model training. In this study, we use AAP probability as 
an objective function to estimate the regression matrices for 
discriminative speaker adaptation rather than HMM parameters 
for model training.

3.1. GMER Criterion 
In GMER training algorithm, the AAP probability is defined by 
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where nmX ,  is the nth training sentence from the mth model mλ

and its length is nT , { } nT

ttnmnmX
1,,, =

= x . mP  represents the prior 

probability of class m . The aggregate a posteriori probability 
can be viewed as the averaged posterior probability over all 
aligned speech segments. Assume that the training data are i.i.d., 
the joint likelihood of training data nmX ,  and model mλ  is 

expressed by ∏ == nT
t mtnmmnm pXp 1 ,,, )()( λλ x . The AAP 

probability can be written as 
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Here, )(⋅l  is a loss function under the case of using 1=γ  and 

0=θ  in sigmoid function. The misclassification measure 
becomes 

∑
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In [10], a closed-form AAP solution was derived to estimate the 
HMM parameters 

)(maxarg AAPAAP Λ=Λ
Λ
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3.2. AAPLR 
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However, for speaker adaptation, we are adjusting the HMM 
mean vectors to a new speaker using cluster-dependent linear 
regression matrices }{ )(mrWW = . The joint AAP probability of 

class and regression matrix is established by 
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Again, the objective function of AAPLR can be rearranged as  
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Here, we specify 1=mP  and )1/(1 −= MPj  for mj ≠  and 

)}(),(log{),;( )()(,)(, mrmmrnmmrmnmr gXpXg WWW λλ = . (16)

where )( )(mrg W  represents the prior density of regression 

matrix )(mrW . To simplify the estimation, we assume that the 

covariance matrix of HMM Gaussian distribution is diagonal, i.e. 
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We estimate the D rows of regression matrix 
},,1,{ ),( Dddmr L=w  by solving the optimization problem 

)(maxarg AAPAAP WW
W

J= .                    (18) 

The gradient of )(AAP WJ  with respect to dmr ),(w  is derived to 

be 
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dmr ),(w  is yielded by solving the linear equation 
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Without loss of generality, we can express (20) in matrix form 
rLw =⋅dmr ),(  where L  is a )1()1( +×+ DD  matrix and r  is 

a )1(1 +× D  vector. Finally, we solve a linear equation to find 

},1,{ ),()( Dddmrmr L== wW  via 

1
),(

−⋅= Lrw dmr .                               (21) 

4. EXPERIMENTS 
In the experiments, we carried out the linear regression speaker 
adaptation algorithms of MLLR, MAPLR, MCELR and AAPLR 
for continuous Mandarin speech recognition. Mandarin is a tonal 
and syllabic language. We conducted the base syllable 
recognition for comparative study. A broadcast news speech 
recognition task was performed to examine the performance of 
speaker adaptation. In this study, we prepared two speech 
corpora for HMM training and adaptation. The speaker-
independent HMM’s were trained using the benchmark 
Mandarin speech corpus TCC300 [4] which was recorded in 
office environments using close-talking microphones. We 
sampled 14266 sentences (about 16 hours) recorded by 100 
males and 100 females for training. The construction of context-
dependent sub-syllable HMM’s for Mandarin speech was 
referred to [4]. The adaptation and testing data sets were 
sampled from the MATBN database [11]. MATBN database 
contained Mandarin Chinese broadcast news (PTSN) utterances, 
which were shared by the Public Television Service Foundation 
of Taiwan and collected by the Institute of Information Science 
at Academia Sinica, Taiwan. MATBN was a 120-hour broadcast 
news corpus. We performed two-pass adaptation prior to speech 
recognition; task adaptation and speaker adaptation. In task 
adaptation, we used 200 utterances (about 30 minutes) randomly 
sampled from MATBN database to adapt the existing HMM’s to 
fit the broadcast news transcription task. In speaker adaptation, 
we collected sixty utterances (about 14 minutes) from one male 
reporter and one female reporter and performed linear regression 
adaptation. The other 40 utterances (about 9 minutes) from the 
same speaker were adopted for speech recognition. For all 
experiments, we used 26 dimensional feature vectors consisted 
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of twelve Mel-frequency cepstral coefficients, one log energy 
and their first derivatives. Several sets of experiments on 
supervised adaptation were reported. To evaluate the 
performance versus adaptation data length, we performed 
speaker adaptation using ten, thirty and seventy adaptation 
utterances. The number of regression classes was fixed to be four 
for all cases. Each utterance was about three seconds. In Table 1, 
the syllable error rates (%) are reported through five-fold cross-
validation over the adaptation data set. 

 MLLR MAPLR MCELR AAPLR
10 32.5 31.5 31.1 30.6 
20 30.5 29.7 29.6 29.2 

Number of 
Adaptation 

Data 60 29.0 28.4 28.1 27.9 

Table 1 Syllable error rates (%) of supervised adaptation using 
various adaptation algorithms. 

 MLLR MAPLR MCELR AAPLR
10 42.7 43.4 52.5 46.6 
20 52.7 53.4 65.6 57.1 

Number of 
Adaptation 

Data 60 86.8 85.1 106.0 93.1 

Table 2 Adaptation time (second) of supervised adaptation with 
different adaptation algorithms. 

Without performing adaptation, the baseline syllable error 
rate (SER) is 53.3%. After performing task adaptation, SER is 
greatly reduced to 41.6%. This implies that the environmental 
mismatch between databases of TCC300 and MATBN is 
significant and can be compensated by task adaptation. Namely, 
it is important to perform environmental adaptation for a new 
task of broadcast news transcription. Further, when performing 
linear regression speaker adaptation, we find that the SER’s are 
reduced by using MLLR, MAPLR, MCELR and AAPLR under 
different numbers of adaptation data. At the case of ten 
adaptation utterances, AAPLR obtains SER of 30.6%, which is 
better than those of MLLR (32.5%), MAPLR (31.5%) and 
MCELR (31.1%). As the number of adaptation data increases to 
sixty, all recognition results are improved accordingly. The 
performance of AAPLR (27.9%) is still superior to those of 
MLLR (29.0%), MAPLR (28.4%) and MCELR (28.1%). The 
reasons are due to the incorporation of prior regression 
information and the discriminant capability when using AAPLR.  

Also, we investigate the computational costs of MLLR, 
MAPLR, MCELR and AAPLR adaptation algorithms. The 
processing time for different adaptation algorithms was 
measured on a personal computer with CPU Pentium 4 2.0 GHz 
and RAM 256 MB. Table 2 reveals that MCELR spends 
additional 20% computation time relative to MLLR. However, 
the computation costs of AAPLR and MLLR are comparable. It 
is because that both algorithms realize the closed-form linear 
equations. These results show the superiority of AAPLR for 
speaker adaptation. 

5. CONCLUSION 
We have presented a new AAPLR algorithm for rapid and 
discriminative speaker adaptation. The adapted speech HMM’s 
using discriminative regression matrices were able to enhance 
the speech recognition performance for broadcast news 
transcription. The AAP criterion was introduced to achieve 

model discriminability and simultaneously derive a closed-form
solution for rapid parameter estimation. More importantly, we 
established AAPLR algorithm in which a closed-form solution to 
regression matrices was derived to achieve desirable adaptation 
performance. HMM parameters of all acoustic units could be 
effectively adapted. To improve system robustness, the prior 
information of transformation matrix was incorporated for 
constrained estimation. Such Bayesian approach enabled the 
proper estimation of regression matrices. From the experiments, 
we find that the recognition rate of using AAPLR for supervised 
speaker adaptation is higher than those of MLLR, MAPLR and 
MCELR for different numbers of adaptation data. Also, the 
computation cost of AAPLR is smaller than MCELR and 
moderate compared to MLLR and MAPLR. 
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