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ABSTRACT

This paper describes a new technique that gives high performance
based on GARCH (Generalized Autoregressive Conditional Het-
eroskedastic) time series modeling incorporating past variances
to predict future variances. This is particularly suitable since no
transformation on the speech signal is performed, rather we have a
new statistical feature extraction, moreover, the speech signals are
among non stationary processes whose variance are heteroskedas-
tic; e.g., time varying. Therefore, we provide a new parametric
speech modeling using GARCH coefficients. The features resulting
from GARCH modeling are used for recognition of isolated digits
1 to 10 in Persian language. The results show a significant im-
provement in the recognition accuracy compared to results based
on Mel-frequency cepstrum coefficients (MFCC).

1. INTRODUCTION

The structure of many successful systems for speech recognition
typically consists of a signal preprocessing feature extraction fol-
lowed by a pattern classifier. Automatic extraction of useful infor-
mation from speech has been a subject of active research for many
decades. The Mel-frequency cepstral feature extraction methods
that are currently used in many speech recognition systems are
motivated by the properties of the human auditory system and
speech perception. However, despite their general acceptance as
the standard features in clean speech recognition, the cepstral fea-
tures are widely acknowledged not to cope well with the noisy
speech. In order to improve the robustness of front-ends with re-
spect to noise and distortion some alternative features have been
proposed [5, 6, 7]. On the other hand, the MFCC have proven
to be one of the effective set of features for speech recognition.
They are computed by applying a Mel-scaled filter bank either to
the short-term fast Fourier transform magnitude spectrum or to the
short-term linear prediction coefficient-based spectrum to obtain a
perceptually meaningful smoothed spectrum. Despite the empir-
ical superiority of MFCC’s over many other types of signal pro-
cessing techniques, there are no theoretical reasons why the linear
transformation associated with the discrete cosine transformation
performed on Mel-filter bank log channel energies could construct
an optimal transformation since it is fixed a priori and it is also
independent of HMM states and of the speech classes. For this
reason, a search for a new statistical model of speech has led to
the so called optimum-transformed HMM [8] based on minimum
classification error criterion. However, there is a transformation
involved namely the Mel-warped discrete Fourier transform DFT
in addition to the training of HMM using the gradient descent

method. The state-dependent transformation on the Mel-warped
DFT, together with the HMM parameters, is automatically trained
using the gradient descent method, resulting in a minimization of a
measure of an overall empirical error count. Mostly the statistical
models are either segment or frame based strategies, however, fea-
tures are extracted by a deterministic method at frame level. Many
statistical models such as stochastic segment model SSM [3] or the
simpler parametric trajectory model [4] that models the time vari-
ation, are operating at the segment level. However, at the frame
duration, for the frequency domain transformation we must resort
to the stationarity assumption. In the frequency domain approach,
a plausible speech recognition can be attained, but, at the expense
of a large number of features; therefore, we are faced with a high
feature space dimension. For analysis simplicity the increase in
the size of the feature space forces us to assume the independency
among features, this shortcoming is accumulated as the observa-
tion vector dependency problems grow larger. Moreover, with the
assumption on the independency of features; i.e, a diagonal co-
variance matrix assumption, and the conditional independency of
feature vector (such as in HMM), we are apt to lose more infor-
mation of speech signal behavior. In addition to being sensitive
to additive and conventional noise, a critical issue in recognition
using MFCC features, MFCC is known as a deterministic map-
ping from the signal space to the feature space and therefore the
whole role of the statistical modeling has to be done by the recog-
nizer. Since the dimension on the feature space is large, we need
some assumptions such as independency between feature compo-
nents; in order to have a diagonal covariance matrix, and we need
the conditional independency between feature vectors in HMM in
order to limit the computational complexity. Furthermore, with a
large number of features, the search space is large as well to find
the optimum model in the training phase, and this could result in
an ill conditioned covariance matrix for a small database and/or
a large model parameter set. GARCH for parametric time series
modeling, with the simultaneous capability of time varying tem-
poral variance modeling , can be used instead of MFCC for speech
recognition. GARCH, which stands for generalized autoregressive
conditional heteroskedasticity model provides a leverage on the
assumption of finite variance for all stochastic processes. Gener-
ally speaking, we consider heteroskedasticity as time-varying vari-
ance. Conditional implies a dependence on the observation of the
immediate past, and autoregressive describes a feedback mecha-
nism that incorporates past observation into the present. GARCH
then is a mechanism that includes past variance in the description
of the future variance. The pioneering research by [10], and then
[9, 11, 12] has shown that a time-varying variance instead of a con-
stant is more useful in modeling non stationary phenomena such as
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economic series. GARCH models account for heavy tailed prob-
ability distributions as excess kurtosis. Speech signals are known
to resemble a non stationary process, therefore, a successful can-
didate for a GARCH model. However low order GARCH, i.e.
GARCH(1,1) which is used in this paper, couldn’t model speech as
a whole signal by a few parameters, and high order GARCH is too
computationally expensive for this purpose; also we couldn’t seg-
ment speech sequence by GARCH. In this paper, we use GARCH
speech modeling to obtain some features in the time domain for
speech recognition.

The paper is organized as follows: In section 2 we discuss the
GARCH model. In section 3 the GARCH coefficients are used to
extract the GARCH features for speech recognition and validate
the performance over Farsi digits in clean and noisy environments,
and some concluding remarks are provided at the end.

2. GARCH MODELING

Bollerslev [9] developed GARCH as a generalization of Engle’s
[10] original autoregressive conditional heteroskedasticity (ARCH)
volatility modeling technique. Bollerslev designed GARCH to of-
fer a more parsimonious model that lessens the computational bur-
den. Next, we briefly discuss GARCH modeling. Let’s consider
the time series Xt defined by

Xt = E{Xt |Ψt−1 } + εt, (1)

where Ψt−1 denotes all information about Xt until time t− 1 and
εt is a residual error, and furthermore, assume that E{Xt |Ψt−1 }=0
, and if

εt =
√

ht zt, zt ∼ N (0, 1) (2)

ht = α0 +

p∑
i=1

αiε
2

t−i +

q∑
j=1

βiht−j , (3)

then Xt is a generalized autoregressive conditionally heteroscedas-
tic (GARCH) process of order (p, q), zt is an IID sequence of ran-
dom variables [9] here assumed Gaussian, where N (·) stands for
the Gaussian distribution of mean zero and variance 1, and αi and
βj are non-negative constants with the convention that αi > 0,
and βj > 0. The model in (1)-(2) describes a relationship be-
tween the variance at time t and the past variances. According to
this model small changes follow small changes and large changes
follow large. This describes the volatility clustering and the ca-
pability of heavy tailed distribution modeling of GARCH process.
For GARCH(1,1) , we have:

ht = α0 + α1ε
2

t−1 + β1ht−1, (4)

and in order to have finite unconditional variance, the following
constraint is imposed on the GARCH coefficients

∑
i

αi +
∑

j

βj < 1. (5)

In IGARCH [13] this inequality is replaced with equality and al-
lows modeling time series whose variance is not even finite. We
use GARCH(1,1) to model speech signals. Next we adopt the
maximum likelihood principal to estimate the parameters of the
GARCH model. GARCH model parameters can be estimated us-
ing maximum likelihood estimation (MLE). We assume that {X1,

Mixture 2 4 8
MFCC Viterbi 90.6% 95.0% 96.33%

MFCC Baum-Welch 93.5% 97.0% 97.33%

Table 1: Recognition performance using MFCC.

· · · , XT } are generated through some mechanism modelled by
GARCH(1,1), then the likelihood function is formulated as

L(α0, α1, β1) = fX2,··· ,XT |X1,h1
(X2, · · · , XT |X1, h) (6)

=

T∏
j=2

1√
2πhj

exp

(
− x2

j

2hj

)
, (7)

hj = α0 + α1X
2

t−1 + β1ht−1,

where hj are obtained recursively. By taking the logarithm and
neglecting the constant term, we obtain the log likelihood function
as

�(α0, α1, β1|X, h) = − 0.5
T∑

j=2

log hj + x2

j/h2

j , (8)

where X = (x1, · · · , xT )T , and h = (h1, · · · , hT )T , superscript
T denotes transposition, with the aid of a constrained nonlinear op-
timizations technique subject to the constraint in (5), the GARCH
coefficients of the model are obtained, these coefficients are to
serve as the new speech features. Next, we examine the perfor-
mance of GARCH modeling in speech recognition.

3. IMPLEMENTATION RESULT

We use GARCH modeling to represent the speech signal, and then
include these coefficients into MFCC features for increased per-
formance of the speech recognizer in the isolated digit classifi-
cation in Persian, where HMM is used for classification with 5
states, constant for all classes, with 2, 4, and 8 Gaussian mixtures.
The MFCC features are used with the Viterbi and Baum-Welch
HMM training method to compare the gain of the model training
according to the expectation maximization (EM) method in Baum-
Welch with the K-means algorithm in Viterbi. The other models
include MFCC plus GARCH features and only the GARCH coef-
ficients are trained and tested with the Viterbi method. The speech
database included pronunciation of digits 1 to 10 in Persian lan-
guage, 30 utterances per speaker per digit, 6 male speakers, in 3
different days for any speaker, 1200 samples for training and 600
samples for tests are used. The benchmark features were 25 MFCC
coefficients (12 MFCC +12 ∆MFCC + 1 log energy), and the
GARCH features include 3 coefficients, the unconditional variance
α0 , ARCH and GARCH coefficients α1, β1. In order to decrease
the feature extraction time the iterations are restricted, without any
loss of performance in recognition, throughout our simulations we
use 2 iterations. The three GARCH coefficients are extracted from
any frame with a duration of about 15 msec. HMM training with a
Gaussian mixture according to the Viterbi and Baum-Welch meth-
ods are applied and 0.001 is selected as the minimum variance.
The results in Table 1 as a benchmark demonstrate the improve-
ment achieved by using the Baum-Welch algorithm and the EM
algorithm versus the Viterbi method using the clustering method.
However, the improvements are not staggering given the compu-
tational burden and the complexity of EM algorithm. The results
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Mixture 2 4 8
MFCC+GARCH 99.50% 99.83% 100%

GARCH(3 coefficients) 99.17% 99.83% 100%

Table 2: Recognition performance using MFCC and GARCH,
Viterbi training throughout.

Mixture 2 4 8
MFCC(25 coefficients) 82.17% 86.33% 85%
GARCH(3 coefficients) 76.00% 95.67% 99.83%

Table 3: Recognition performance in noisy environment.

in Table 2 demonstrate that GARCH coefficients improve recog-
nition performance once added to the MFCC features. Noting that
the second row of Table 2 is obtained using 25 MFCC features and
3 GARCH coefficients, and comparing the second row of Tables
1 and 2, in spite of a weak HMM training (Viterbi ) and a small
number of mixtures, by dispensing with the MFCC coefficients all
together in the third row of Table 2 but keeping the GARCH coef-
ficients, the simulations achieve similar performance results. The
second and third row of Table 2 claims that the advantage gained
by including 25 MFCC coefficients is not overwhelming, as it was
stated in the introduction the theoretical basis for MFCC is not es-
tablished yet. Tables 1 and 2 are in a noise free environment. Next,
we demonstrate the performance for noisy speech.

When Gaussian noise is present, MFCC and GARCH per-
formances are compared under the condition that signal to noise
ratio (SNR) is set to -3 dB, including for both the training and
test data. As in previous scenarios, the models in the two cases
train 25 MFCC and 3 GARCH coefficient features. The results of
recognition in Table 3 demonstrate that the recognition by only 3
GARCH coefficients is more robust and consistent than 25 MFCC
features, and as the number of mixtures increases the performance
of GARCH based feature recognition method consistently increases.
In fact, the additive white noise has a constant power over all fre-
quency bands and infects all of the 25 MFCC features, but the
effect of white noise on the GARCH model is analyzed as fol-
lows. According to (2), and (3) for white noise only α0 is nonzero
and α1 and β1 are zero. This conclusion can be easily drawn be-
cause of the unconditional variance nature of the white noise, and
no conditional variance aspects are present in the additive white
noise. However, the addition of white noise is not additive in the
GARCH model coefficients, but only shifts the statistical coeffi-
cients that are proportional to variance, and its effect according to
the empirical results is not as critical as that of white noise on cep-
stral coefficients as white noise can be on the cepstral coefficients.
As an example, let’s consider

Y = X + N, (9)

where X is the clean speech, N is a zero mean white noise of
variance δ. As δ → ∞ the GARCH(1,1) parameters denoted by
(α0, α1, β1) approach (δ, 0, 0), therefore, α0 → ∞, and (α1, β1)
→ (0, 0) monotonically; i.e., the parameters of the GARCH model
are shifting proportionally. In a noisy environment, this important
result is manifested in the feature space. The clusters created by
(α0, α1, β1) are only shifted in the feature space proportionally,
the noise only shifts different clusters and does not cause them to
interfere with each other. For one of the utterances, this analy-
sis is verified by Figure 1 where the addition of noise only shifts

the unconditional variance GARCH coefficient; α0, with respect
to the noiseless speech unconditional GARCH coefficient, and in
Figure 2 where the addition of noise again only shifts the con-
ditional variance GARCH coefficient; β1, and it approaches zero
under the noisy environment. But the characteristics of this coef-
ficient sequence under either noisy or clean speech are preserved.
According to Table 3, we have a decrease in GARCH model per-
formance with 2 mixtures where the problem is attributed to the
clusterings of small number of features; 3 features per frame in
Viterbi training that exploits the K-means algorithm per segment.
On the other hand, usually, HMM training in addition to Baum-
Welch training is used in practical applications where the number
of mixtures is a lot more than 2.

4. CONCLUSION

In this paper, we discussed the feasibility of GARCH modeling
for speech signals. GARCH speech modeling can capture the time
varying variance nature of speech signals effectively. The recog-
nition results illustrate that GARCH(p, q) coefficients can replace
the MFCC features for speech recognition applications success-
fully. This is especially noteworthy since p + q coefficients of
GARCH can replace 25 MFCC features where the dimensions of
the feature space are significantly reduced and subsequently the
volume of search space to find the optimal model in training phase
is reduced by a factor of 3/25. Furthermore, the size of covari-
ance matrix is reduced; hence, it is well posed for feature vec-
tor. Thus using GARCH modeling the ill conditioning problem of
the covariance matrix for small database is less critical. By us-
ing GARCH modeling, not only the model variation at any frame
duration is captured explicitly, but also the theoretical optimiza-
tions that model variations at segment level, (that were laid dor-
mant because they were too complexity expensive for usage), are
now more at hand since the feature space is reduced.
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