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ABSTRACT

In this article we present a method for defining the question set
used for the induction of acoustic phonetic decision trees. The
method is data driven resulting in an ordered feature space in con-
trast to the usual categorical one consisting of phonetic attribute
values. Visualization of the feature space verifies that the derived
characteristics are meaningful. We apply the features to a multi-
lingual speech recognition task, showing that comparable results
to the standard method, using question sets devised by human ex-
perts, can be derived.

1. INTRODUCTION

A central question in the design of an automatic speech recognition
(ASR) system is the definition of proper acoustic phonetic entities.
This question gets even more important when trying to share the
acoustic feature space among different languages, trying to exploit
acoustic similarities between languages for reducing the size of the
overall parameter space.
The common state of the art approach for defining the acoustic
models is the use of a phonetic decision tree. Such a tree consti-
tutes a functional mapping from a feature to a model domain defin-
ing for all phonetic circumstances of the input domain a proper
hidden Markov model (HMM) in the output domain.
One crucial topic of this mapping function is the definition of the
input domain. A standard approach is the use of phonetic features
assigned to the phonemes. This usually works quite good, but ex-
hibits the problem that the designer is dependent on phonemical
knowledge. In case of a multilingual system design this might be a
severe problem. Not only knowledge for one but for all languages
is needed. Additionally, this knowledge should be comparative.
This is in strong contrast to the information found in phonetic dic-
tionaries and textbooks assigned to one specific language. Infor-
mation and transcriptions given there usually follow the principle
of phonological contrast [1] using a broad transcription. This leads
to the problem that equal phonetic features may be assigned to
clearly distinguishable phonemes of different languages.
To cope with these problems, several methods were proposed to
construct the features data driven. Ciprian et al. [2] present an
approach based on a bottom-up clustering using bigram phone
statistics. Beulen et al. [3] also propose a bottom-up approach
but already incorporate acoustic information by making use of the
HMMs seen in the database. Both methods were presented in a
monolingual framework, but at least the second one should be ap-
plicable in the multilingual case too. As a third approach we men-
tion the construction of phonetic broad classes by a confusion ma-
trix, Byrne et al. [4], Žgank et al. [5].
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Fig. 1. Local codebook similarities.

In [6] local similarities between the probability density functions
of HMMs are identified, and used for constituting phonetic fea-
tures. For identifying the similarities, advantage is taken of the
prototype character of the single mixture components of the code-
books of semicontinuous HMMs (SCHMM). In this work we ex-
tend this method of so called ”local codebook features” (LCB) by
transforming the high dimensional and low populated LCB feature
space to a low dimensional subspace using a principal component
analysis.
The paper is organized as follows. In Section 2 LCB features are
presented, followed by Section 3 discussing the question gener-
ation. Section 4 gives a system overview followed by Section 5
with the test set up. Test results are presented in Section 6 and the
conclusions are given in Section 7.

2. LOCAL CODEBOOK FEATURES

The basic idea behind LCB-features [7], [6] is that similar phonetic
properties should cause similar shaped probability density func-
tions (PDF) on a local scale. In Figure 1, this idea is depicted. It
shows the assumed probability density functions of the phonemes
’a’, ’e’, and ’d’, with two locally similar regions. The similarities
might be caused by common properties of the phonemes as e.g.
’voiced’ or ’open’.

Constructing features based on this idea means to identify such
similarities in the PDFs of HMMs. In the case of continuous
HMMs, this might be a quite hard task, but in the case of SCHMMs,
it results in simple vector calculus. Assuming the PDFs being con-
structed by a set of prototype mixture components, the calculation
can be reduced to the prototype weights.
For the sake of simplicity, we assume during derivation of the
method, that the beforehand trained incontextual HMMs have only
one state and refer to only one codebook. In the following, this al-
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Fig. 2. Locality and neighborhood.

lows to leave out the state and codebook indices. Hence, the PDF
of one SCHMM is given as

Gmix(i) =

L∑
l=1

cil · G (µl, ·) i ∈ {1, ..., I}, (1)

with L the codebook size and i the HMM index. G(µl, ·) names
the lth mixture component with mean vector µl. For the local
search, we define a locality just by a mixture component, and
therefore by every index l̃ out of the L mixture components. I.e.
there are L localities. We also define the neighborhood of l̃ as the
L̃ mixture components closest to the locality l̃.
Figure 2 depicts the concept for a two dimensional case. It shows
a part of a codebook with class regions and the mean values (black
dots). Two localities are accentuated by marking the correspond-
ing means by crosses instead of dots. The neighborhood is set to
L̃ = 5, and the equivalent regions with the five closest mean val-
ues to the localities are drawn hatched.
For a formal derivation of the method, we define the distance d(l̃, l)
between the mixture components by Equation (2)

d(l̃, l) = 〈µl̃, µl〉 l, l̃ ∈ {1, ..., L}. (2)

Identifying for each locality l̃ the L̃ closest neighbors is done by
evaluating Equation 2 for all l and l̃. As result we get for each
locality l̃ an index set Sl̃ naming the indices of the L̃ closest mix-
ture components of locality l̃. Using min(n) to signify the ”nth

smallest value of” we can express Sl̃ as

Sl̃ =

{
l | arg min

1≤l≤L

(n)d(l̃, l), n ∈
{

1, ..., L̃
}}

, (3)

where l̃ ∈ {1, ..., L}.
Applying these index sets to the PDF for each HMM i, it re-

sults into local weights vectors c̃l̃i comprising of each HMM i the
weights of the codebook mixture components in the neighborhood
of the locality l̃. Hence, c̃l̃i represents the local shape of the un-
derlying PDF. Although this is not completely correct, the remain-
ing mixture components also contribute to the probability mass at
the locality l̃, it is a reasonable simplification. Grouping all local
weights vectors of a locality l̃ together, we get the L̃xI matrix C̃l̃

C̃l̃ = [c̃l̃1, ..., c̃l̃I ] . (4)

In this vector formulation, the term ”locally similar” for the PDFs
of different HMMs is equivalent to vectors c̃l̃i being close together
in the vector space spanned by them. Searching for local similar-
ities is therefore reduced to the search of suitable clusters in the
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Fig. 3. Sammon map of local weights vectors.

space span{c̃l̃1, ..., c̃l̃I}. For identify meaningful clusters we ap-
ply K-means clustering to the samples C̃l̃.
In Figure 3 we visualize the elements falling in one cluster by a
nonlinear multidimensional scaling [8] trying to preserve the rel-
ative distances between elements. The figure shows the resulting
Sammon Map of a typical C̃l̃ sample consisting out of 732 vectors.
The mapping is performed from dimension L̃ = 6 to the plane us-
ing the euclidian distance. The relative mean mapping error of the
vector distances is given by less than 7%, indicating the map being
a good representation of the original sample.
In Figure 3 three regions can be identified. There is a highly
crowded region around the origin. These samples correspond to
HMMs without significant probability mass within the locality un-
der investigation. It follows a less crowded broad stripe clearly
showing some structure. Here some meaningful cluster can be de-
fined. Finally, there is an individual entry in the right upper corner.
It is caused by an HMM showing a quite different structure at the
current locality than the others.
We proceed by constructing for each HMM a LCB feature vector
stating for each cluster whether the corresponding vectors c̃l̃i falls
in it. This results in binary LCB feature vectors fi indicating with
0 and 1 whether HMM i contribute to a cluster or not. Putting
together the vectors fi leads to the LCB feature matrix F ,

F = [f1, f2, ..., fI ] . (5)

Matrix F consists out of I columns, one for each HMM. The num-
ber of rows is given by the number of localities used for defining
the LCB features, multiplied by the number of clusters identified
per locality. This number can be quite high. Assuming 256 local-
ities, according to a codebook with 256 mixture components, and
K = 5 cluster, we get 256 · 5 = 1280 rows. That is, the feature
space constituted by matrix F is of dimension 1280, whereas only
30−50 measurements, the typical number of phonemes, are avail-
able.
Reducing the dimensionality of the feature space is done by a prin-
cipal component analysis (PCA) of matrix F . The correlation ma-
trix FF ′ is build and the eigenvalue problem

FF ′U = UD (6)

is solved. The resulting eigenvector and eigenvalue matrices U
and D define the final, quasi-continuous feature space F̃ by the
transformation

F̃ = Ũ ′F. (7)
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Matrix Ũ is a reduced version of the eigenvector matrix U . It
consists out of the eigenvectors with the biggest eigenvalues, con-
tributing strongest to the new feature space.
The resulting feature space is given by span(F̃ ′) with dimension
rank(F̃ ), typically in the range 10 − 15. The features defined by
matrix F̃ are given by its columns consisting of continuous val-
ues, defining for each phoneme a point in the feature space. In
reality these features are not continuous although the number of
possible feature vectors is quite high. We derive them by the trans-
formation of the binary matrix F to F̃ . Therefore, the number of
different features is at the most given by all possible permutations
of a vector fi. With an assumed dimension of 1280 we get 21280

permutations. This leads to an very fine grid in the final feature
space span(F̃ ′) and the name ”quasi-continuous LCB features”.

3. QUESTION GENERATION

For model definition we use a binary decision tree [7] splitting
nodes according to a binary question and an entropy based impu-
rity measure. In the classical approach, a binary question is com-
posed out of phonetic attribute values assigned to the SAMPA rep-
resentations of the phonemes we use in our system. The attribute
values are taken from corresponding IPA descriptions [1] of the
phonemes. Examples are given in Table 1.
A binary question is composed out of one up to two phonetic at-

Table 1. Examples of phonetic attributes.

p b i e

Attri. 1 consonant consonant vowel vowel
Attri. 2 obstruent obstruent front front
Attri. 3 plosive plosive close close-mid
Attri. 4 - - short short

tribute values associated with the context of a model. According
to Table 1, a question may be: ”Is the context of the model plosive
or close?”. This is done for all possible compound questions of an
attribute and for all attributes.
In case of LCB features, we started by training incontextual mod-
els (3 states) for each language. This is followed by extracting the
features as described in Section 2. The features are based on com-
mon multilingual mel-cepstrum coefficients (MFCC) codebooks.
The neighborhood is chosen to L̃ = 6 and, for each locality K-
means clustering is applied leading to 14 cluster. Together with a
codebook size of 256 we get 256 · 14 = 3584 cluster. A phoneme
is assigned to a cluster if any of its states matches it. With 47
phonemes for German, 44 for English and 31 for Spanish the in-
termediate matrix F has dimension 3584 × 122. PCA leads to
the final feature matrices F̃ of dimension 15 × 122. A clipping
of matrix F̃ for some German phonemes is presented in Table 2.
These features are directly overtaken for constructing question by

Table 2. LCB features.

Phoneme

2: 2.177 -0.786 -3.199 2.566 ...
6 1.680 0.447 2.749 -2.175 ...
9 -2.066 -1.169 2.562 1.833 ...
a: 1.609 -2.587 -1.795 1.721 ...

the decision tree. A question corresponding to Table 2 is: ”Is the
third component of the model’s feature less than −1.795?”
Quasi-continuous LCB features constitute a fundamental change

Left demiphone Right demiphone

Fig. 4. Demiphone topology.

in the process of model definition by a decision tree. Instead of the
usual categorical variables, as plosive, voiced, etc. we now have to
handle ordered variables in the definition space of the tree.

4. SYSTEM OVERVIEW

The system we use works with SCHMMs. Every 10ms twelve
mel-cepstrum coefficients (MFCC) (and the energy) using cepstral
mean subtraction are computed. First and second order differen-
tial MFCCs plus the differential energy are employed. For each
sub-feature, a codebook is constructed consisting of 256 and 32
(delta energy) gaussian mixtures, respectively. Common multilin-
gual codebooks are used.
Acoustic phonetic modelling is done by demiphones, Mariño et al.
[9]. They can be thought of as triphones which are cut in the mid-
dle giving a left and a right demiphone, see Figure 4.
The concept of the demiphones also influences the process of the
LCB feature construction. Instead of monophones we construct
the LCB features on left and right incontextual demiphones lead-
ing to two independent features spaces, one for the left and one for
the right demiphones.

5. TEST SET UP

Training and testing the systems are performed using the SpeechDat-
II fixed telephone databases. Three languages are used: Span-
ish (S), English (E), and German (G). For each language, a 1000
speaker training and a 400 speaker test part is extracted. For train-
ing, we use phonetical rich sentences. For testing, phonetical rich
words mixed with application words are used. The test suit con-
sists of isolated words avoiding the need of a language model. De-
tailed statistics on the corpora are given in Table 3.

Phrases Females Males Grammar size

S-Training 7994 500 500 -
S-Test 2644 200 200 1438

E-Training 8089 500 500 -
E-Test 2554 200 200 1254

G-Training 7540 500 500 -
G-Test 2700 200 200 1314

Table 3. Training and test data statistics.

State tying without a-priori distinction between different base phones
is done. That is, each tree performs the model definition over the
whole phoneme set.

6. TEST RESULTS

The actual performance tests for the quais-continuous LCB fea-
tures are preceded by an investigation of the feature space’s topol-
ogy. That is, we try to examine the neighborhood relationships
within span(F̃ ). For reasonable features it is expected to find
a partitioning in vowels, fricatives, etc. Accessing the question
is done by building a Sammon map [8] for the left feature space

I - 955

➡ ➡



20 15 10 5 0 5 10 15

15

10

5

0

5

10

15

2:

6

9

a~

a:a aI

aU

b

C

d

dZ

e:
E:

E

f

g

h

@

i:

I

j
k

l

m n

N

o~o:

O

OY

pf

p

r

s

S
t

ts

tS

u:

U
v

x

y:

Y

z

Z

Fig. 5. Sammon map of German left LCB features.

and its exemplarily visualization for German. The mapping is per-
formed from dimension 10 to the plane using the euclidian dis-
tance. After 2000 iterations the mean mapping error of the vec-
tor distances is given by than 3.77. Figure 5 depicts the mapped
feature space with the position of German phonemes (SAMPA-
notation). Although the mapping is not perfect we can clearly
identify some of the desired structure of our feature space. In the
upper left corner b, d, g beside p, t, k is found. That is, plosives
are grouped together and they are distinguished in voiced and un-
voiced ones. Somewhat below more in the middle we find the
affricatives ts, pf, dZ, and tS mixed with the fricatives z, h, Z and
S. Even C lies beside S. s and f lie down in the middle somewhat
apart but at least constituting a group. All back vowel except u:
and U are located in the lower right corner forming a group to-
gether with the uvular x and r. u: and U form an own group above
the middle. All front vowels are located in the upper middle and
the right upper corner. Central vowels @ and 6 are located on the
right edge. For the nasals n, m, N, the lateral l and the approxi-
mant j the picture is not as clear. Although n, j, N group together
at the upper right, l and especially m lie far apart. Nevertheless,
bearing in mind the relatively high mapping error, the desired pho-
netic structure which is expected for meaningful acoustic phonetic
features is clearly recognizable.
As a next step we investigate the performance of the quasi-continuous
LCB features compared to LCB features without dimension reduc-
tion and a classical IPA-based feature table. The model set consists
in all cases out of 4500 multilingual HMM states. Table 4 depicts

Table 4. Test results, WER [%].

IPALang LCBorg LCB1−15 LCB2−16 LCB3−17

S 7.72 7.75 6.43 6.32 6.47
G 10.85 8.70 9.78 9.45 9.96
E 28.90 29.37 28.78 28.50 28.31

the results for three different quasi-continous LCB feature sets to-
gether with the reference results IPALang and LCBorg taken from
[6]. In case of IPA features the so called language question is in-
cluded to get comparable results to the LCB cases, since in [6]
we found that LCB features implicitly include this question. We
distinguish three cases for the quasi-continuous LCB feature. In
all cases the transformation matrix consists of 15 eigenvectors but
of different ones, the subscripts in the table header name them.

E.g. LCB2−16 means the 2nd up too the 16th component is taken.
During the PCA we found the first eigenvalue being about 21
times stronger than the second, and the second also about 2 times
stronger than the third. Staring from the third, the relative differ-
ence between the succeeding eigenvalues is given by just by a few
percent. The reason for this behavior might be seen in Figure 3.
By far the most entries can be found around the origin. These very
small local weights vectors correspond to phonemes having nearly
no probability mass at a specific locality, but they cause the over-
whelming part of entries in the LCB feature matrix F . The PCA
actually identifies these component as by far the most important
one resulting in an exceptional high first eigenvalue. On the other
hand, we know that this is actually the least important component,
therefore, discarding it should be possible.
The results in Table 4 confirm our supposition. Although the re-
sults are quite similar, including the first principal component worse
the situation compared to LCB2−16. Discarding also the second
component results to be disadvantageous. The small gain, LCB3−17

shows in comparison to LCB2−16 in case of English, is more than
compensated by its looses for German and Spanish .
Comparing the results with the references, we always clearly out-
perform the IPA case. For the original, not transformed LCB fea-
tures the conclusion is not so clear. For LCB2−16, the gain of
0.87% for English and 1.43% for Spanish is faced by a lose of
1.26% for German.

7. SUMMARY AND CONCLUSIONS

In this work we extended the method of LCB features by a PCA
to so called quasi-continuous LCB features. For the case of Ger-
man we justified that the resulting feature space reflects the de-
sired phonetic neighborhood relations as expected for meaningful
phonetic features. Finally we showed that quasi-continuous LCB
features lead to comparable recognition performance as usual LCB
features, and that IPA features are clearly outperformed.
We conclude that with quasi-continuous LCB features a powerful
low dimensional acoustic phonetic characterization is found. Fu-
ture work will focus on further refinement of the method and its
use in crosslingual applications.
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