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ABSTRACT

Much effort has transpired over the past three decades in the for-
mulation of “ideal” acoustic features which represent the speech
signal in a discriminative and compact manner while being robust
to adverse conditions and invariant to speaker differences. A good
way of making ASR systems invariant to speaker differences is to
perform speaker normalization on the input features. The most
popular speaker normalization technique is the vocal tract length
normalization (VTLN). However, its implementation requires im-
mense computational resources and not practically applicable in
real-time/embedded ASR systems. In this paper, we propose a new
speaker normalization algorithm entitled Built-in Speaker Normal-
ization (BISN) which is performed on-the-fly within the newly pro-
posed PMVDR acoustic front-end and reduces computational re-
sources significantly enabling its use within contemporary ASR
systems. Evaluations using an in-car extended digit recognition
task showed that on-the-fly implementation of the BISN algorithm
produced a relative word error rate (WER) reduction of 24% com-
pared to a no speaker normalization baseline.

1. INTRODUCTION

Although current speaker independent automatic speech recogni-
tion (ASR) systems perform well in most of the real world ap-
plications, the performance gap between speaker dependent and
independent settings is significant. Many researchers would agree
that there is still a substantial potential in finding an “ideal” acous-
tic front-end for the speech signal that successfully maintains the
information needed for efficient speech recognition, especially in
noise, while eliminating irrelevant speaker-dependent traits [1].

A significant step towards this “ideal” acoustic front-end was
taken by the formulation of Perceptual MVDR Coefficients (PMV-
DRs) which are more effective than MFCCs for a number of tasks,

especially in noise [2, 3]. However, they still lack the speaker-
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invariance property. This paper introduces a new and computation-
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domain. Although the transformation was simple, the estimation
of the warping factor required over 5 minutes of speech for each
speaker and the estimation process was computationally intensive.
Lee and Rose [5, 6] proposed a more efficient set of speaker nor-
malization procedures similar to those of Andreou. Other non-
linear transformations have also been considered recently by re-
searchers. For example, the feasibility of Bi-linear and All-pass
Transforms (BLT, APT) for the application to the speaker normal-
ization problem has been extensively studied by McDonough [7,
8]. He has shown that BLT can also be implemented in the cepstral
domain. The optimal BLT parameters were estimated by a Gaus-
sian Mixture Model (GMM) as the one maximizing the likelihood
of the incoming data.

2. THE PMVDR ACOUSTIC FRONT-END

For the details of the PMVDR computation, we refer readers to
[2, 3]. PMVDR framework implements a new acoustic feature-
extraction algorithm which eliminates the use of a filterbank to
incorporate perceptual considerations. Instead, the FFT spectrum
is directly warped using interpolation before envelope extraction.
The envelope is extracted via a low-order all-pole MVDR spec-
trum which is shown to be superior to the Linear Prediction (LP)-
based envelopes[9]. Ultilizing direct warping on the FFT power
spectrum by removing the filterbank processing step leads to the
preservation of almost all information that exists in the short-term
spectrum and accurate positioning of the perceptually very impor-
tant formant peaks. Also, using the MVDR method to extract the
upper envelope contributes greatly to the superior performance in
noisy conditions [9, 2, 3]. The flow diagram of the PMVDR algo-
rithm is given in Fig. 1.
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“ideal” acoustic front-end described above, which we desperately
need in order to make the ASR technology pervasive.

Andreou et al. proposed maximum likelihood-based speaker
normalization procedures to extract and use acoustic features which
are robust to variations in vocal tract length [4]. The algorithm
reduced speaker-dependent variations between formant frequen-
cies through a simple linear warping of the frequency axis, which
was implemented by re-sampling the speech waveform in the time
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Fig. 1. Flow diagram of PMVDR front-end

3. THE “MEANING” OF PERCEPTUAL WARPING

Almost all acoustic front-ends proposed for ASR use some form
of nonlinear warping on the FFT spectrum at some level. The ar-
gument for applying a non-linear warping, often referred to as per-
ceptual warping, to the speech spectrum in the feature extraction
process is strongly tied to the fact that the human auditory sys-
tem performs similar type of processing to place more emphasis
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on lower frequencies. In all of our experiments, when a perceptual
warp is introduced, it always yields better recognition accuracy
(on the order of 20%, relative). We claim that the perceptual warp
was actually meant to remove some of the existing inter-speaker
variability in the feature set. To justify this claim, we conducted
an analysis within the framework in [10, 11, 2]. We extracted the
PMVDR features for the CU-Move [12] training set (see Sec. 6)
first with no perceptual warp, with a bark scale (¢ = 0.57 at
16kH z), and then with the BISN warp factors (see Sec. 5). Af-
terwards, we computed the variation of the trace measure (TM).
The larger the TM, the more effectively the speaker variability is
removed [10, 11, 2]. Figure 2 shows the variation of the trace mea-
sure (with respect to the minimum of number of speech classes and
feature dimension) for the three cases. It verifies that using the
perceptual warp indeed leads to the removal of significant inter-
speaker variability. However, using the BISN warps specifically
estimated for each speaker further reduces the inter-speaker vari-
ability.
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Fig. 2. Variation of TM for NO warp (diamonds), BARK warp
(triangles), and BISN warp (circles) for the CU-Move data

4. CLASSICAL VTLN

In VTLN, the speech spectrum is linearly warped with an optimal
warp factor (8) [5, 6, 13]. The speaker-dependent parameter, /3,
is determined by conducting likelihood computations. Generally a
single Gaussian (1G) HMM set (A\) which is trained on a large pop-
ulation of speakers is used to estimate the warp factor. Assume that
we have N; utterances with Xf denoting the set of feature vectors
and W; denoting the corresponding transcriptions and the goal is
to estimate the optimal warp factor (ﬂAi) for speaker ¢. Here, ﬂAz
is estimated by maximizing the likelihood of the warped features
given the HMM model, A and the transcriptions, W,

Bi = arg mﬂaxP’r(XfM, W;). (1)

Optimum warp factors are estimated by searching over a one di-
mensional grid of 33 points (a step size of y=0.01 in this case) in
the range of [0.84, 1.16]'. After estimating the warp factors, all ut-
terances are parameterized and then a “canonical” HMM set (An)

'Our search was over this range, but one may reduce the dimension of
the search space at the expense of performance

is re-estimated from this warped feature set. During recognition,
optimal warp factors are estimated by a two-pass strategy. For clas-
sical VTLN experiments, we use all the available data from each
test speaker to estimate the optimal warps. On the average, the es-
timation of the optimal VTLN warp for a speaker requires 18 times
the computational resources needed for one feature extraction and
one likelihood computation.

5. BUILT-IN SPEAKER NORMALIZATION (BISN)

The inter-speaker variability analysis showed that perceptual warp-
ing is in fact a speaker normalization warping, too. Originating
from this fact, we propose to adjust the perceptual warp parameter
within the PMVDR front-end for each speaker specifically and call
this new warp the self normalization warp (SNW). This should, in
turn, normalize for the speaker differences. Since this procedure
does not require 2 applications of warping to the spectrum (for
perceptual warp and for VTLN warp), as in classical VTLN, it is
more efficient. Also, the normalization is achieved by only adjust-
ing an internal parameter of the PMVDR front-end (i.e. o), mak-
ing it a built-in procedure. The estimation of the self normalization
warp (SNW), a;, for speaker ¢, is done the same way as the VTLN.
In a typical setting with a @ = 0.57 (Bark scale at 16kH z), the
search space for the SNWs can be chosen as [0.49, 0.65] with a
step size of v = 0.01. In this case, the search requires 10 times the
computational resources needed for one feature extraction and one
likelihood computation which is still computationally expensive.

5.1. Binary Tree Searh (BTS) Approach

The likelihood of the data from a specific speaker is typically mono-
tonically increasing (with the changing warp factor) up to a maxi-
mum, i.e. until reaching the optimal warping factor, and then be-
comes monotonically decreasing. Using this monotonicity prop-
erty, we can devise a much more efficient search algorithm than
the linear search approach. Let the 1G HMM set be trained with
Qmy (e.g. 0.57) and the search space be chosen as [a, o] (e.g.
[0.49, 0.65] ) with a step size -y (e.g. 0.01) resulting in an N;-point
(N; = (aw — o) /v + 1, e.g. N; = 17) one dimensional search
space. We can summarize the proposed binary tree search (BTS)
algorithm is as follows;

1. Compute the likelihood, P+ for amaw, referred to as the
middle warp since it is the center of our search space.

2. Compute the lower warp as &y = (@ + Qmew ) /2 and sim-
ilarly upper warp as ayw = (@ + Qmw)/2. This divides
the warp space into lower and upper regions, whose middle
warps are gy, and .y, respectively.

3. Compute the likelihood, Py, for ayy, if Py > Py, then
disregard the upper region, consider the lower region as the
new search space whose middle warp is a;,, and go to Step
2. If P, < Pp,y then compute Py, fOr ayqy. If Py >
Pruw then disregard the lower region, consider the upper
region as the new search space whose middle warp is cyq
and go to Step 2. For the last case, where Py < P,
take the new search space to be [@w, Quw], Whose middle
warp is @iymq and go to Step 2. In all cases, the search space
is reduced by half.

Recursively repeating steps 2 and 3, we estimate the self normal-
ization warp(SNW) by an average of 6 times the computational re-
sources needed for one feature extraction and one likelihood com-
putation (with the example settings above). This means a reduction
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System/WER Female | Male | Overall
MEFCC (Baseline) 9.16 13.22 11.12
PMVDR (w/o SN) 5.57 8.76 7.11
PMVDR w/ SN

VTLN 4.30 7.12 5.66
BISN 4.16 7.17 5.61
BISN/BTS 4.16 7.17 5.61
BISN/MS-BTS(off-line) 4.13 7.16 5.59
BISN/MS-BTS(on-the-fly) 3.90 7.04 5.42

Table 1. WERs[%] of CU-Move for different speaker normaliza-
tion (SN) algorithms.

of 40% in the computational load in the search stage by moving
from linear search to binary tree search (BTS).

5.2. Model versus Feature Space Search

The search for the SNWs is conducted in the feature space, so
the contribution of the Jacobian is not taken into account which
may cause some systematic errors in SNW estimation. When the
search is conducted in the model space, the need to compensate
for the Jacobian is eliminated [14]. In the model-based search, we
train a 1G HMM set for each warp in the search space off-line.
We then extract the features for the no warp case only once and
then compute the likelihood against different warped models. In-
tegrated with the BTS approach, the model-based search requires
only 1 feature extraction and 6 likelihood computations. We call
this approach model space-binary tree search (MS-BTS). First, we
train 1G HMM models for each warping factor in the search space.
An example search space would be in in [0.49, 0.65] with a step
size of v = 0.01 and with the center warp of ac = 0.57. As-
sume that the input features are extracted with the warp anx. We
pick the model (trained with the warp aar) yielding the maximum
likelihood given the features. The search is performed via the bi-
nary tree search (BTS) approach. The optimal SNW « is given in
Eq.2. The rest of the normalization is the same as classical VTLN.

ao =ac +an —au 2

6. CU-MOVE EXTENDED DIGITS TASK

For all experiments, we use SONIC [15], the Univ. of Colorado’s
LVCSR System. The acoustic models are decision-tree state clus-
tered HMMs with associated Gamma probability density functions
to model state-durations. We used a window length of 25ms and a
skip rate of 10ms by Hamming windowing the frame data before
further processing. The 39 dimensional feature set contains 12
statics, deltas and delta-deltas along with normalized-log energy,
delta and delta-delta energy. Cepstral Mean Normalization (CMN)
was utilized on the final feature vectors. The speech data used in
the experimentation was obtained from the CU-Move Extended
Digits Corpus. The database and noise conditions are analyzed
in [12] in detail. A total of 60 speakers balanced across gender
and age (18-70 yrs. old) were used in the training set. The test set
contained another 50 speakers, again gender- and age-balanced.
The HMMs were trained using a decision-tree HMM trainer and
contained a total of 10K Gaussians. The vocabulary size was
40. We used the optimized settings (o« = 0.57 and P = 24) for
PMVDR on the CU-Move task [3]. The recognition performance
is summarized in Table 6 for different speaker normalization(SN)
approaches.

We now turn to an approach for the on-the-fly application of
BISN w/MS-BTS in a real world scenario for which, we have all

Optimal warp search
via Model-based Binary <<
Tree Search(MS-BTS) <+——

training data in advance and can estimate the SNWs off-line. How-
ever, for the test we will not have access to all data from a speaker
to determine the SNWs. Moreover, we do not have the information
as to when the speaker changes occur. So the algorithm should in
fact be able to adapt the SNWs to the changing speaker and also
be flexible (i.e. slowly changing) even for the same speaker to ac-
count for the slight variations in the vocal tract characteristics. By
making clever use of all the algorithms developed so far, it is pos-
sible to establish a co-operation between the front-end and the rec-
ognizer which enables the front-end to normalize itself automati-
cally without the need to perform recognition twice, or re-train the
models. We give the block-diagram of the self-normalization front
end (BISN w/MS-BTS) in Figure 3.
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Fig. 3. The block diagram of the self normalizing front-end
(PMVDR w/BISN) in a real-word application scenario.

Assume that we have the canonical models, An and that recog-
nition is performed for small sections of speech (i.e. utterances).
Then the self-normalizing front-end operates as follows; (1) Pa-
rameterize the input utterance n with the warp o, (n), (2) Pass the
output features to both recognizer and optimal SNW search algo-
rithm (MS-BTS), (3) Recognize the utterance and pass the tran-
scription (with alignment) information A,, to MS-BTS block, (4)
Determine the optimal SNW, i.e. the instantaneous warp for the
current utterance n, a;(n). (5) Pass a;(n) through a recursive
averaging block with a forgetting factor () to obtain an averaged
version, i.e. aqa (n+1). (6) Supply aa (n+1) to the PMVDR front-
end, since this is an estimate for the incoming utterance n+1. Note
that, we never perform recognition twice and sequentially we re-
fine the SNW estimate to accommodate for variations in the vocal
tract characteristics even for the same speaker. Recursive averag-
ing also ensures quick adaptation of SNW to changing speakers.

ag(n+1)=a;(n)(1—-B)+as(n)f, n=0,1,...,N (3)

where o (n) is the averaged warp used in the parameterization of
utterance n, o;(n) is the instantaneous warp estimated for utter-
ance n given the features from the front-end X, and alignment
from the recognizer A,, aq(n + 1) is the estimated warp fac-
tor to be used in the parameterization of utterance n+1. As an
initial condition for the first utterance, we can choose to use the
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center warp of our search space, i.e. aq(0)=ac=0.57. N is the
total number of utterances in the test set. 3 provides a means for
smoothing the SNW estimate and for accounting for changes in
vocal tract characteristics. Since the instantaneous SNW «;(n) is
estimated from a short segment of data (as short as one spoken
digit), it fluctuates considerably. We give the variation of instanta-
neous SNW (a;(n)) and recursively averaged SNW (aq (1)) for a
comparison in Fig. 4. The fixed self normalization warps obtained
from the off-line BISN w/MS-BTS algorithm are also superim-
posed on the averaged SNW graph. The averaged SNW tracks the
fixed SNW permitting slow variations within the same speaker.
Allowing some flexibility for the warp factor even within the same
speaker compensates for variations which may stem from Lombard
effect, stress or a number of other physiological factors. It is also
shown that the averaged SNW successfully and quickly adapts to
new speakers with no need to detect speaker turns. We observed
that the particular value of 8 is not that crucial as long as it is
within the range of [0.4, 0.8].
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Fig. 4. The variation of the ins. SNW, avg. SNW and fixed SNW,
speaker turns are also marked (the avg. SNW and fixed SNW are
shifted upwards by 0.1 for proper illustration).

Lastly, we consider computational efficiency of all algorithms.
We use the number of feature extractions (NFE) required for the
whole system (both for the search(S) and recognition(R)), the num-
ber of likelihood computations (NLC), and the number of recog-
nition passes (NRP) to evaluate computational efficiency. Table 2
clearly illustrates the computational gain obtained by moving from
classical VTLN to the on-the-fly version of BISN w/MS-BTS. The
BISN algorithm eliminates the need to perform 2 times warping
on the FFT spectrum. Integration of MS-BTS algorithm within
the BISN framework for an on-the-fly application eliminates the
need for extracting the features twice. The features extracted for
recognition are also passed to the MS-BTS block for SNW estima-
tion for the incoming utterance. Since the estimation is performed
sequentially, the need to perform recognition twice is also elim-
inated. The only drawback of MS-BTS is that we need to store
all 1G models trained for each point in the search space (17 1G
models for BISN) in memory all the time. However, since these
are only 1G models, they do not require large amount of memory.

Algorithm NFE(S+R) | NLC | NRP
VTLN (Baseline) 18+1 18 2
BISN 10+1 10 2
BISN/BTS 6+1 6 2
BISN/MS-BTS-off-line 1+1 6 2
BISN/MS-BTS-on-the-fly 0+1 6 1
TOTAL GAIN[%] 94.7 66.7 | 50.0

Table 2. Computational complexity (NFE: Number of Feature Ex-
tractions, S: Search, R: Recognition, NLC: Number of Likelihood
Computations, NRP: Number of Recognition Passes)

7. CONCLUSIONS

We proposed a new and efficient algorithm to perform on-the-fly
speaker normalization which can easily be implemented within the
PMVDR front-end. In the classical VTLN, we need to perform
2 times warping of the spectrum, first to account for perceptual
considerations and second to normalize for speaker differences.
The proposed BISN algorithm, on the other hand, estimates a self-
normalization warp (SNW) for each speaker which is shown to
perform both perceptual warp and speaker normalization on a sin-
gle warp. The Model Space-Binary Tree Search (MS-BTS) algo-
rithm was developed to reduce the computational load in the search
stage. Moving the search base from the feature to model space re-
duced the need to extract the features for each point in the search
space, which in turn reduced the computational load significantly.
A sequential real-time implementation of the BISN w/MS-BTS
algorithm also eliminated the need to perform multi-pass recogni-
tion. BISN w/MS-BTS algorithm is also more accurate than the
classical VTLN with very light computational requirements.
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