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ABSTRACT

We have been reducing word error rates (WERs) on conversational
telephone speech (CTS) tasks by capturing long-term (˜500ms)
temporal information using multi-layered perceptrons (MLPs). In
this paper we experiment with an MLP architecture called Tono-
topic MLP (TMLP), incorporating two hidden layers. The first of
these is tonotopically organized: for each critical band, there is a
disjoint set of hidden units that use the long-term energy trajectory
as the input. Thus, each of these subsets of hidden units learns to
discriminate single band energy trajectory patterns. The rest of the
layers are fully connected to their inputs. When used in combina-
tion with an intermediate-term (˜100ms) MLP system to augment
standard PLP features, the TMLP reduces the WER on the 2001
Nist Hub-5 CTS evaluation set (Eval2001) by 8.87% relative. We
show some practical advantages over our previous methods. We
also report results from a series of experiments to determine the
best ranges of hidden layer sizes and total parameters with respect
to the number of training patterns for this task and architecture.

1. INTRODUCTION

Traditional feature extraction methods for automatic speech recog-
nition (ASR), e.g. PLP and MFCC, compute features over a
very small amount of time spanning the entire spectrum. Re-
searchers have shown, using information theoretic analysis, that
there is significant discriminant information about the identity
of the current phone at times up to several hundred millisec-
onds away [1, 2]. This is the motivation for a family of long-
term information extracting neural architectures. Neural TRAPS
(mnemonic for “TempoRAl PatternS”) learns discriminant long-
term (˜500ms-1000ms), narrow frequency patterns for ASR [3, 4]
using two stages of multi-layered perceptrons (MLPs). We im-
proved upon the TRAPS architecture and developed “Hidden Ac-
tivation TRAPS” (HATS) for conversational telephone speech
(CTS) tasks. HATS (described in section 3) are effective as a
complementary source of information to traditional short-term fea-
tures. When we append a transformed version of the phonetic pos-
terior outputs coming from HATS to PLP features, we can reduce
the word error rate (WER) on the 2001 Nist Hub-5 CTS evaluation
set (Eval2001) by 4.3%. In combination with an intermediate-term
(˜100ms) MLP system (with MLP-based features derived from 9
frames of PLP), HATS can further reduce the WER by 7.53%.

In this paper we develop an MLP architecture with the same
weight connections as HATS, but trained using a single run of
error-back propagation. This eliminates the need to specify sub-
frequency band level training targets, and consequently removes

the need to store such targets for training (hence reducing disk re-
quirements). We call this MLP architecture the Tonotopic Multi-
Layered Perceptron (TMLP). We will show how the TMLP per-
forms better than either HATS or a simpler unconstrained MLP-
based method, achieving an 8.87% relative reduction in WER
on Eval2001. We then explore the various configurations of the
TMLP to find: 1) the optimal number of first layer hidden units; 2)
the relationship between the optimal number of first layer hidden
units, the total size of the TMLP, and the amount of training data;
and 3) what ratio of training frames to TMLP parameters produces
the best accuracies given a fixed amount of training time.

2. TONOTOPIC MLP DESCRIPTION

Inspired by the tonotopic organization of the human peripheral au-
ditory system, where different positions in the cochlea are sensitive
to different frequencies, we developed the TMLP. As noted earlier,
the first hidden layer of the TMLP is tonotopically organized into
several sets of hidden units. Each of these sets is constrained to see
inputs coming only from a single frequency band, and together, all
of the sets span the frequency range of speech. The second hid-
den layer, as well as the output layer are fully connected with their
previous layers. Figure 1 shows the structure of a TMLP.

We have been using log critical band energies as inputs to the
TMLP. After computing the log critical band energies of speech
every 10 milliseconds and normalizing the mean and variance over
each utterance, we take 51 consecutive frames (˜500 ms) of these
normalized energies as the input layer of the TMLP. The output of
the ith first layer hidden unit for frame f is given by equation (1):

Olayer1,i
def
= sig

⎛
⎝ f+25∑

t=f−25

infreq(i),tWlayer1,t,i + Blayer1,i

⎞
⎠
(1)

where sig(x) is the logistic sigmoid function. infreq(i),t is the
tth frame of energy in the one and only one frequency band that
the ith first layer hidden unit is constrained to see. Wlayer1,t,i and
Blayer1,i are the trainable weights and bias respectively for the ith
unit.

The second layer of hidden units takes the outputs of all first
layer hidden units as inputs. The output of the jth second layer
hidden units is given by equation (2):

Olayer2,j
def
= sig

(∑
I

Olayer1,iWlayer2,i,j + Blayer2,j

)
(2)
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Fig. 1. Tonotopic Multi-Layered Perceptron

Wlayer2,i,j and Blayer2,j are the trainable weights and bias re-
spectively for the jth second layer hidden unit. Finally, the outputs
of the TMLP are given by equation (3):

Outk,f
def
=

exp(Zk)∑
K exp(Zk)

(3)

where Zk is given by equation (4):

Zk
def
= sig

(∑
J

Olayer2,jWlayer3,j,k + Blayer3,k

)
(4)

Wlayer3,j,k and Blayer3,k are the trainable weights and bias for
the kth output unit.

As is typical for MLPs trained to estimate posteriors, the
TMLP is trained with output targets that are “1.0” for the class
associated with the current frame, and “0” for all others. For all of
the systems described here, the MLPs are trained on 46 phoneme
targets obtained via forced alignment from SRI’s large vocabulary
recognizer [5]. Also, all MLPs are trained to minimize cross en-
tropy error by using the error back propagation algorithm. It is
important to note that TMLP imposes a constraint upon the learn-
ing of temporal information from the time-frequency plane: cor-
relations among individual frames of energies from different fre-
quency bands are not directly modeled. Instead, the TMLP models
correlation between long-term energy trajectories from different
frequency bands.

3. COMPARISONS TO OTHER LONG-TERM SYSTEMS

We compare the performance of TMLP to two other MLP sys-
tems that learn long-term temporal information. In our previous
work [6], we developed the Hidden Activation TRAPS (HATS) ar-
chitecture. It is identical to TMLP with respect to the structure;
i.e., the way each of the hidden units are connected is the same
in HATS and TMLP. The difference arises in training. The HATS
system learns the weight connections and biases in a two stage ap-
proach. First, we train single hidden layer MLPs for each critical
band on the phone targets. Second, using the outputs of the hid-
den units of the first stage MLPs as inputs, we train another single
hidden layer MLP on the phone targets. In contrast, the TMLP is
trained in a single stage without specifying critical band level train-
ing targets. Since the structure of both TMLP and HATS are the
same, they both impose the same learning constraint that forces

the system to first learn discriminant narrow-frequency temporal
patterns. Both the HATS and TMLP systems in this section use
40 hidden units per critical band and 750 hidden units at the merg-
ing layer giving about 500k total parameters. We compare HATS
and TMLP to an unconstrained MLP that also has 500k parame-
ters. This unconstrained MLP has a single hidden layer, and its
inputs comes from 51 frames of log energies over all 15 critical
bands. We refer to this long-term neural architecture as “15 Bands
x 51 Frames”. Also, for comparison purposes, we include results
from our more traditional MLP which takes as inputs 9 frames
of 12th order PLP plus energy, deltas, and double deltas. This
MLP learns information about the speech over an intermediate-
term scale (˜100ms), and we refer to this as “PLP 9 Frames”.

3.1. Experimental Setup

We have seen that the best way to utilize the MLP posterior es-
timates as features has been to apply a series of transformations
and concatenate them to the traditional PLP front-end features [7].
The transformations, designed to better fit the MLP outputs with
Gaussian mixtures, require taking the log followed by principal
component analysis (PCA) to orthogonalize and reduce the dimen-
sionality from 46 to 25. The back-end that we used was similar to
the first pass of the system described in [5], using a bigram lan-
guage model and within-word triphone acoustic models. For these
experiments we didn’t use the multi-pass system which greatly im-
proves WER, but in other work with HATS our improvements on
the simpler system have largely carried over once later decoding
passes and adaptation stages were employed.

The training set that we use for both MLP and HMM train-
ing consists of about 68 hours of conversational telephone speech
data from four sources: English CallHome, Switchboard I with
transcriptions from Mississippi State, and Switchboard Cellular.
Training for both MLPs and HMMs was done separately for each
gender, and the test results below reflect the overall performance
on both genders. We hold out 10% of the training data as a cross
validation set in MLP training. For fairness in comparison, all
of the neural nets systems have roughly the same number of total
network parameters (about 500k trainable parameters). The test
results are on the 2001 Hub-5 evaluation data (Eval2001), a large
vocabulary conversational telephone speech test set consisting of
a total of 2,255,609 frames and 62,890 words.
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Baseline
System WER (%) Improv.

Description (% Rel.)

Baseline:
Non-Augmented 37.2 -
HLDA(PLP+3d)

15 Bands x 51 Frames 36.6 1.61
HATS 35.6 4.30
TMLP 35.5 4.57

PLP 9 Frames 35.6 4.30

Inv Entropy Combo
15 Bands x 51 Frames 34.8 6.45

+ PLP 9 Frames
Inv Entropy Combo

HATS + PLP 9 Frames 34.4 7.53
Inv Entropy Combo

TMLP + PLP 9 Frames 33.9 8.87

Table 1. WER of Augmented Posterior Feature Systems on
Eval2001

3.2. Results

Table 1 summarizes the WER of systems that use front-end fea-
tures created by the concatenation of various transformed MLP
outputs and baseline PLP features. The baseline PLP features
are the heteroskedastic linear discriminant analysis (HLDA) trans-
formed 12th order PLP plus energy and the first 3 deltas. All of
the resulting features after concatenation are mean and variance
normalized on a per conversation side basis. “HLDA(PLP+3d)” is
the baseline feature system which gives a 37.2% word error rate.
When we append the transformed outputs from “15 Bands x 51
Frames”, WER drops by 1.61% relative. Appending the trans-
formed HATS, TMLP, and “PLP 9 Frames” features causes rel-
ative drops in WER by 4.30%, 4.57%, and 4.30% respectively.
Combining our MLP-based long-term (500 ms or more) features
with intermediate term (100 ms) networks has yielded great im-
provements in the past, so using an inverse entropy weighted poste-
rior combination technique to scale stream weights based on confi-
dence [8], we combine “PLP 9 Frames” separately with “15 Bands
x 51 Frames”, HATS, and TMLP, apply log and PCA, and then
append these to the baseline “HLDA(PLP+3d)” features. Using
the combination of “PLP 9 Frames” with “15 Bands x 51 Frames”
to augment the baseline features, we get a WER of 34.8% (see
“Inv Entropy Combo 15 Bands x 51 Frames + PLP 9 Frames” in
table 1). The combination of “PLP 9 Frames” with HATS and
TMLP, give word error rates of 34.4% and 33.9% respectively.

3.3. Discussion

From table 1, we see that both the HATS and TMLP features out-
perform the “15 Bands x 51 Frames” features (1.61% improvement
vs. 4.30% and 4.57%). One plausible explanation for this result
is that the structural constraints imposed by HATS and TMLP on
the learning of long-term critical band energies allow them to more
efficiently utilize the number of trainable parameters. Comparing
the TMLP features with the HATS features, TMLP features per-
form slightly better on word error rate, but the difference is not
statistically significant. In terms of frame accuracy 1, however, the

1Frame accuracy is the ratio of the number of correctly classified frames
to the total number of frames, where classification is deemed correct when

TMLP network performs at 68.2% accuracy on Eval2001, while
the HATS network performs at 66.9%. By training all parame-
ters in one overall back-propagation, TMLP is better able to max-
imize frame accuracy. One practical benefit to TMLP compared
with HATS is that there is no need for storing large intermediate
files that are created after the 1st stage training used as inputs for
the 2nd stage training in HATS. These take ˜40 Gigabytes for this
training set, and much more for the huge data sets that are now
being used for CTS evaluations.

The “PLP 9 Frames” features also give a significant reduction
in WER when used to augment the baseline “HLDA(PLP+3d)”
features (4.30% relative). However, the information that it pro-
vides is complementary to the information provided by the neural
nets that utilize longer-term inputs. We see this from the results
that all combinations with the long-term systems yield greater rela-
tive improvement than just using “PLP 9 Frames” alone. Of all the
combinations, combining with the long-term TMLP system works
the best, adding another 4.57% relative improvement over using
“PLP 9 Frames” alone.

4. AN EMPIRICAL STUDY OF TMLP

In this section we explore the relationships between the amount of
training data, the total number of parameters, and the number of
first hidden layer units per critical band in the TMLP. We created
four different training sets for the TMLP. The first set consists of
about 124.9 hours of conversational telephone speech data from:
English CallHome, Switchboard I with transcriptions from Mis-
sissippi State, and Switchboard Cellular. Subsampling the 124.9
hour set by 2, 4, and 8 results in a 62.4 hour, 31.2 hour, and 15.6
hour training set. We trained TMLPs with 20, 30, 40, 50, and 60
hidden units per critical band (layer 1), and for each of these cases
we chose the second hidden layer size such that the total number of
parameters was either 250k , 500k, 1 million, or 2 million. Train-
ing for each TMLP setting was done separately for each gender,
and the frame accuracies reflect the overall performance on both
genders. For testing, we report frame accuracies on the Eval2001
test set as described in section 3.1. Figure 2 shows four graphs of
frame accuracy on Eval2001 versus the number of hidden layer 1
units per critical band of TMLPs for the four different amounts of
training data.

All curves in Figure 2 exhibit a max accuracy between 30 and
50 units except for the 1M parameters/15.6 hour case which has
a max at 60. Only the 500k parameters/15.6 hour and 1M pa-
rameters/15.6 hour cases show trends that may indicate higher ac-
curacies for greater than 60 hidden layer 1 units. A reasonable
question to ask is whether the optimum number of hidden layer 1
units grows with more training data. From figure 2, we see that
the opposite seems closer to the truth. Looking at all the lines for
TMLPs with 500k, 1M, and 2M parameters, the best number of
hidden layer 1 units seems to even decrease as the training data
increases. However, it does appear to be the case that as the num-
ber of total parameters increases, the best number of hidden layer
1 units increases slightly. This can be seen clearly in the 62.4 and
124.9 hour panels. See how the best number of hidden layer 1
units go from 30 for 250k parameters to between 30-40 for 500k
parameters, and to 40 for 1M and 2M parameters.

In a previous empirical study on training MLPs for use in a
hybrid HMM/MMLP system on Broadcast News [9], we found

the highest output of the MLP corresponds to the correct phoneme label.
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Fig. 2. Frame Accuracy Results on Eval 2001 for Various TMLPs

that the optimal ratio of number of training frames to number of
parameters was in the range of 10 to 40 for a constant product
of training frames and parameters, or equivalently the number of
connection updates (CUPs) per complete epoch of training. The
product of training frames and parameters gives a measure of how
long it takes to train an MLP. We have plotted the average frame
accuracies for TMLPs of constant CUPs versus the ratio of frames
to parameters in figure 3. From this figure we can see a slowing
of accuracy improvements as the ratio of frames per parameter in-
creases. There is a decrease in accuracy for the 5 TeraCUP line
when frames per parameter is greater than 20. 10 frames per pa-
rameter is definitely not the best ratio; however, it is unclear where
the exact optimal ratio lies. It is somewhere between 20 and 80. It
is interesting to note that the systems with 40 frames per parame-
ter (i.e. 124.9 hours/500k parameters, 62.4 hours/500k parameters,
and 62.4 hours/250k parameters) have 30-40 as the best number of
hidden layer 1 units.

5. CONCLUSIONS

The tonotopic multi-layered perceptron (TMLP) is a competitive
alternative to other long-term information capturing systems like
TRAPS [3, 4] or hidden activation TRAPS (HATS). When used to
complement traditional short and medium-term front-end features
for the recognition of conversational telephone speech, TMLP
achieves 8.87% relative WER reduction on Eval2001. This is
slightly better than HATS and is a more practical technique in
terms of the storage required for training. We also have studied
relationships between the dimensionality required for the archi-
tecture, particularly in relation to major task parameters. In par-
ticular, we found that the empirically optimum number of critical
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band hidden units does not grow with increasing training data, but
it slightly increases with an increase of parameters. We have also
found that the optimal ratio of training frames to parameters is be-
tween 20 and 80 and that TMLPs trained in this range have best
accuracies when the number of critical band hidden units is be-
tween 30-40.
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