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ABSTRACT

This work proposes a novel method of predicting formant frequen-
cies from a stream of mel-frequency cepstral coefficients (MFCC)
feature vectors. Prediction is based on modelling the joint den-
sity of MFCCs and formant frequencies using a Gaussian mixture
model (GMM). Using this GMM and an input MFCC vector, two
maximum a posteriori (MAP) prediction methods are developed.
The first method predicts formants from the closest, in some sense,
cluster to the input MFCC vector, while the second method takes
a weighted contribution of formants predicted from all clusters.
Experimental results are presented using the ETSI Aurora con-
nected digit database and show that predicted formant frequencies
are within 3.2% of reference formant frequencies.

1. INTRODUCTION

Formants are a useful acoustic parameter in speech processing and
methods for their robust estimation have been the subject of much
research [1]. Traditional methods have used frequency-domain
techniques such as peak-picking to identity formants from the spec-
tral envelope. Parametric techniques such as linear predictive cod-
ing (LPC) analysis have also been successful in identifying poles
corresponding to formant resonances [2].

This work differs from these techniques in that it aims to pre-
dict formant frequencies from features designed for speech recog-
nition purposes, specifically MFCC vectors. The motivation for
formant prediction is twofold. First, it is considered that MFCCs
are a relatively robust representation of speech and in particular
the effect of external influences such as noise or channel distor-
tion can be reduced through a variety of processing techniques [3].
Therefore, if a statistical mapping can be derived which enables
formants to be predicted from MFCCs, the resulting estimate may
be more robust than traditional methods which are more suscep-
tible to distortion. Secondly, the distributed speech recognition
(DSR) framework proposed by the ETSI Aurora standard [4] only
transmits MFCC vectors to the remote back-end. If acoustic pa-
rameters of the speech signal are required, some kind of prediction
from the received MFCC vector stream is necessary.

The procedure for extracting MFCC vectors from speech in-
volves much loss of information which is integral to the structure
of the original speech. The ETSI Aurora standard [4] for obtaining
MFCCs is shown in figure 1. MFCCs are extracted using 25ms
frames at 10ms intervals. For every frame of speech, an MFCC
vector comprising coefficients zero to twelve and a log energy
term is computed. Phase information is lost in the magnitude op-
eration, while spectral detail is lost during mel-filtering from 128

The work is funded by EPSRC grant GR/S30238/01.

0-7803-8874-7/05/$20.00 ©2005 IEEE

I-941

Speech
v

Remove Pre-
DC offset emphasis

o

Log energy
calculation

Windowing |FFT| Mel
(Hamming) filterbank

Truncate

Combine

MFCCs

Fig. 1. Outline of ETSI Aurora standard for MFCC extraction [4]
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to 23 channels and through truncation from 23 to 13 coefficients
after the DCT stage. Returning the truncated MFCC vector to a
magnitude spectral representation through zero padding, inverse
DCT, exponential operation and interpolation results in a spec-
trally smoothed estimate. This loss of spectral detail causes the
accuracy of traditional frequency-based formant estimation meth-
ods to degrade. Figure 2a illustrates this by comparing the orig-
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inal magnitude spectrum of a frame of speech to the magnitude
spectrum obtained by inverting an MFCC vector extracted from
the same frame of speech. The LPC-derived magnitude spectrum
in figure 2b shows clearly the position of the four formants. In
this example, comparing the MFCC-derived magnitude spectrum
with the LPC-derived magnitude spectrum shows that the first and
fourth formants are well defined, but it is significantly more diffi-
cult to distinguish between the second and third formants.

This indicates that it is not possible to obtain accurate formant
tracks by inverting the MFCC extraction procedure. However, re-
cent work has shown that pitch can be predicted from MFCCs
within a statistical framework by modelling the joint density of
MFCCs and pitch using a GMM [5]. The work presented here
applies such a statistical technique to predict formant frequencies
from MFCCs. There is reason to suggest that formant prediction
will be at least as accurate as pitch prediction because MFCCs are
a compressed representation of the spectral envelope with a much
weaker representation of pitch information.

The proposed formant prediction system is described in sec-
tion 2. An evaluation of the predicted formant accuracy is made in
section 3 and conclusions drawn in section 4.

2. FORMANT FREQUENCY PREDICTION

This section describes the training of a GMM to model the joint
density of MFCCs and formant frequencies and subsequent pre-
diction of formant frequencies from the GMM.

2.1. Training

Training begins with the creation of a set of augmented feature
vectors, y, which are defined as:

yi =[x, Fi]" (1)

where x is a static MFCC vector, x = [zo, 21, . . . Z12, In(e)], F is
a vector of the first four formant frequencies, F = [Fi, Fa, F3, Fy]
and ¢ indicates the frame number. LPC analysis is used to ob-
tain initial estimates of the first four formant frequency tracks, F'.
These are appended to the fourteen dimensional MFCC vector, X,
resulting in an eighteen dimensional vector.

Not all feature vectors represent speech with a clearly defined
formant structure, such as those from silence and some unvoiced
sounds. At present, a feature vector is classified as containing for-
mant structure according to a voicing decision. This is not an
ideal classification but it does constrain the region from which
formants are predicted. To classify frames as voiced a simple
energy-based threshold is used. The voicing decision is subse-
quently hand-corrected to eliminate speech with no formant struc-
ture. It should be noted that accurate annotation of formant tracks
is non-trivial and to a certain extent subjective, due to processes
occurring in speech production. The procedure for obtaining the
final augmented feature vectors is illustrated in figure 3.

Given a set of augmented feature vectors, a GMM can be used
to model the joint density of MFCCs and formant frequencies. Us-
ing training data associated with voiced speech, the expectation-
maximisation (EM) algorithm is used to perform unsupervised clus-
tering to produce a GMM with K clusters. Each cluster, cx, mod-
els the localised joint probability density function (PDF) of MFCCs
and formant frequencies with mean and covariance:

=[] o m=[TE S ] o

while the set of K clusters models the joint density across the en-
tire feature vector space.
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Fig. 3. Training the formant predictor

2.2. Prediction

Using the relationship between MFCCs and formant frequencies
modelled by the GMM, prediction of a formant vector, F, can be
made from an input MFCC vector, x. This prediction can be made
from the closest cluster to the MFCC vector, in some sense, or
using a weighted contribution from all clusters. For both cases,
the procedure is shown in figure 4.
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Fig. 4. Predicting formants from the GMM

2.2.1. Closest cluster

The closest cluster, I;, to the input MFCC vector, x;, can be defined
as:

k = arg max {p (xil|ck) ar} 3)

where p(x;|cf) is the marginal distribution of the MFCC vector for
the k" cluster and o is the prior probability of that cluster [6].
The marginal distribution is the likelihood of the MFCC vector,
given that it belongs to the k" cluster. Using the joint density of
MFCCs and formant frequencies described by equation 2 for the
closest cluster, a maximum a posteriori (MAP) prediction of the
formant vector can be made from an input MFCC vector [7]. The
predicted formant vector, from the closest cluster, k, is given by:

—1

P 42 ) @

2.2.2. Weighted combination of clusters

To avoid making a hard-decision as to the cluster from which pre-
diction is made, an alternative is to take a weighted contribution
from all clusters. The formant vector is now given by:

K
Bo= Y ) {uf + 2@ - b)) )
k=1
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The weighting term, hx(x;), scales the formant prediction contri-
bution from each of the K clusters by the posterior probability of
the MFCC vector, x;, belonging to the k" cluster [5]:

(1) = akp(Xick) ©)

K
> awp(xilei)
k=1

3. EXPERIMENTAL RESULTS

This section analyses the effectiveness of the formant prediction
techniques described in section 2. Evaluation measures are defined
which consider both frame classification error and percentage fre-
quency error. Using these criteria, formant prediction is measured.

3.1. Evaluation measures

Performance was measured using two criteria. Formant classifica-
tion error for the j** formant track is defined as:

Nu|u + Nu\v + Nj
ES = >20% 1 7
! Ntota,l x 100 ( )

where N, |, is the number of unvoiced frames classified as voiced,
Ny, the number of voiced frames classified as unvoiced and N+ 0%
the number of frames where the j** formant error was more than
20%. Niotqr is the total number of frames in the test data (88,121).
For frames which do not class as classification errors, percentage
formant frequency errors are calculated. The overall percentage
formant frequency error for the j* formant is given by:

N,

% I
Ej:ﬁj;

where N; is the number of frames not classed as classification
errors for the j*" formant.

The results in this section compare the formant prediction ac-
curacy of the two MAP techniques described in section 2. Male
clean speech utterances were taken from a subset of the ETSI Au-
rora connected digit corpus, providing 633 utterances (108,140
vectors) for training and 501 (88,121 vectors) for testing. Fifty-
five speakers were used for training and a separate fifty-two for
testing.

Fy(i) — F(i)

) —
7 x 100 ®)

3.2. Formant prediction accuracy

Classification accuracy, E°, obtained by the closest cluster (equa-
tion 4) and weighted combination (equation 5) techniques is shown
in figure 5a using from 1 to 32 clusters in the GMM. Similarly,
figure 5b compares the percentage predicted formant frequency
error, E%, averaged across all four formants. The results show
a significant reduction in classification error when increasing the
number of clusters from 1 to 2. However, less significant reduc-
tions in classification error are observed for further increases in the
number of clusters. Figure 5b shows that the increase in clusters
gives consistent reductions in predicted formant frequency error
from 6.25% with 1 cluster to around 3.2% with 32 clusters. The
results also show that using a weighted combination of predicted
formants from all clusters gives consistently superior performance
to just using the closest cluster.
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Fig. 5. Comparison of closest cluster and weighted combination
of clusters: a) classification error b) formant frequency error

The previous analysis showed classification and prediction er-
rors averaged across all four formants. More detailed analysis is
shown in tables 1 and 2 by considering the classification and pre-
diction errors of the four formants individually, using weighted
combination prediction.

[ Clusters | F1 [ F2 | F3 [ F4 [ Mean |

1 292 | 521 | 149 | 0.83 2.61
2 269 | 1.51 | 142 | 0.82 1.61
4 1.88 | 1.18 | 1.36 | 0.86 1.32
8 1.25 | 1.13 | 1.31 | 0.93 1.16
16 0.84 | 091 | 1.23 | 0.97 0.99
32 053 | 0.76 | 1.19 | 091 0.85

Table 1. Classification decision error using weighted combination
of clusters by formant

[ Clusters | F1 [ F2 | F3 [ F4 [ Mean |

1 698 | 7.77 | 5.33 | 4.88 6.24
2 6.40 | 498 | 4.89 | 4.76 5.26
4 5.37 | 375 | 4.07 | 4.53 4.43
8 378 | 3.12 | 3.84 | 444 3.79
16 339 | 2.60 | 342 | 423 3.41
32 312 | 233 | 3.15 | 4.15 3.19

Table 2. Percentage formant error using weighted combination of
clusters by formant

Again, the results show that increasing the number of clus-
ters leads to reductions in the individual formant classification and
prediction errors. In particular, using 32 clusters, formant 2 is
most accurately predicted with a percentage formant frequency er-
ror of 2.33%. Formants 1 and 3 have prediction errors of around
3.12% and 3.15%, while formant 4 is least accurate, with an er-
ror of 4.15%. To illustrate the effectiveness of formant predic-
tion, figure 6 compares reference formant tracks with those pre-
dicted from a stream of MFCC vectors. Accurate prediction of the
lower formants is shown clearly, while the variability of prediction
for higher formants is noticeable, particularly for formant 4. This
can be attributed to the non-permanent nature and lower energy of
higher formants for both prediction and the creation of reference
tracks.
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Fig. 6. Spectrograms of “three two oh two” showing formant tracks from a) LPC formant estimation and b) GMM-based formant prediction

3.3. Hand-correction in training

As described in section 2.1, hand-correction of formant tracks for
training and test data was carried out in order to train the GMM
on voiced speech only. An initial experiment was conducted to de-
termine the importance of hand-correcting the training data. Table
3 shows mean classification and percentage formant frequency er-
rors for weighted combination prediction for both hand-corrected
and uncorrected training data. The results show hand-correction of
formant tracks for training makes little difference to predicted for-
mant frequency tracks. The results presented in section 3.2 were
from GMMs trained on uncorrected data, though testing is always
evaluated against hand-corrected formant tracks. Not having to
hand-correct training data saves much time and demonstrates ro-
bustness to labelling errors in the training process.

mean error classification, E° | percentage, B
hand-corrected 0914 3.179
uncorrected 0.847 3.187

Table 3. Mean predicted classification and formant frequency er-
rors using hand-corrected and uncorrected training data

4. CONCLUSIONS

This work has used a GMM, trained on a joint feature vector com-
prising MFCCs and formant frequencies, to enable prediction of
formant frequencies from an MFCC vector. The mean predicted
formants have been shown to be accurate to within 3.2% of refer-
ence formants estimated using LPC analysis and subsequent hand-
correction. Two MAP prediction techniques were developed, us-
ing either the closest cluster to the input MFCC vector, or a
weighted prediction taken from all clusters. Best overall perfor-
mance was achieved using weighted prediction and a GMM com-
prising 32 clusters. Further performance increases may be ob-
tained using more clusters in the GMM but the current, relatively
small size of the training data set has prohibited this.

The current formant prediction does not utilise the strong tem-
poral correlation which exists in the speech signal. To model this,
and hence reduce formant error, further work will investigate the
use of state-specific GMMs within the framework of a set of hid-
den Markov models (HMMs). This has been beneficial for pitch
prediction and is likely to also lead to improvements in formant
prediction [5].
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