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ABSTRACT

A robust language learning system, designed to help students
practice a foreign language along with a machine tutor, must
provide meaningful feedback to users by isolating and localizing
their pronunciation errors. This paper presents a new technique
for automatic syllable stress detection that is tailored for
language-learning purposes. Our method, which uses basic
prosodic features and others related to the fundamental
frequency slope and RMS energy range, is at least as accurate as
an expert human listener, but requires no human supervision
other than a pre-defined dictionary of expected lexical stress
patterns for all words in the system’s vocabulary. Optimal
feature choices exhibited an 87-89% accuracy compared with
human-tagged stress labels, exceeding the inter-human
agreement commonly held to be about 80%.

1. INTRODUCTION

Awareness of proper lexical stress is very important to students
of a foreign language. In English, for instance, misplaced
syllabic stress can alter a word’s part of speech (in the case of
“rebel” or “insult”) or even change the word’s meaning entirely
(as with “content” or “contract”). So any interactive computer
program for language learners needs to be able to automatically
detect a non-canonical stress pattern at least as well as a human
tutor would.

In the past, prosodic features have been used to successfully
identify syllabic stress, but usually only with some catch that
renders such methods unsuitable for most language learning
applications. In [8], stress (or “prominence”) is a strict two-class
problem, applied only to individual syllables taken out of their
word context. A language learning tool, though, will be
interested in classifying only one syllable per word as the
location of primary stress, rather than classifying each syllable
individually as stressed/unstressed. The language learning tool
implemented in [3] can detect misstressed syllables only by
comparing the student’s pronunciation with that of a master

signal, pre-recorded and hand labeled for prosodic information.
This, however, requires considerable human input (and hence,
scalability is an issue), and also limits the program’s vocabulary
to those words that have previously been recorded and tagged.

The method outlined in this paper requires no human
supervision in terms of marking speech data with stress
information. Instead, it uses a dictionary of canonical word
transcriptions for forced phonetic alignment and subsequent
feature extraction and classification. Since this is designed for
language learning modules, in which registered users’
pronunciations are evaluated based on utterances spoken after
machine prompts, it’s safe to assume that the aligner has prior
knowledge of said prompts (and their expected transcriptions),
as well as perhaps some modicum of background meta-
information on the speaker with which to optimize pronunciation
evaluation.

The data we used for these experiments came from the ISLE
Corpus compiled at the University of Leeds [1]. These
recordings consist of 46 adult Intermediate British English
learners who are native speakers of either Italian or German – 23
speakers of each. Utterance prompts were complete sentences
written by design to highlight certain difficulties English learners
typically encounter, both in phonemic pronunciation and in
recognizing variations in primary lexical stress (e.g. “project”
when used as a noun vs. when used as a verb). The recordings
were automatically tagged for canonical forms by a forced-
aligner, then corrected to reflect the speaker’s pronunciation by a
team of five linguists, who also added labels for each word’s
syllable of primary acoustic stress (compared to the canonical).

2. PROSODIC FEATURES

2.1 The Syllable Nucleus

The syllable as a lexical unit is well defined, orthographically
speaking. Open any standard dictionary and there you’ll find
every word parsed by fixed linguistic rules into its component
syllables. But as an acoustic unit of speech, the exact phonemic
boundaries of every syllable vary depending on the rate of
speaking and rhythmic flow of pronunciation. Because syllabic
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durations are difficult to obtain from the speech signal itself (as
explained in [8]), we might generate a dictionary using the
tsylb2 automatic syllable parser [7], which takes an arbitrary
phonetic transcription and returns its most likely syllabic
concatenation, but with a list of two or three close but differing
results corresponding to likely variations in speaking rate. The
word “syllable,” for instance, might be pronounced ‘s_ih’ ‘l_ax’
‘b_ah_l’ at normal speaking rates, but as ‘s_ih_l’ ‘ax_b’ ‘ah_l’
by an abnormally fast speaker.

For these reasons, we have followed [8,9] and opted not to
extract prosodic features from dubious syllable units, but rather
from the syllable nucleus, the essential vowel center of a syllable
(the boundaries of which can easily be obtained from forced
alignments). Results stated in [8,9] indicate that syllabic stress
is highly correlated with the prosodic features derived from
syllable nuclei.

The decision to use syllable nuclei in place of the whole
syllable itself makes sense in light of the prosodic features
traditionally used to detect stress. In choosing the syllable
nucleus as the area of interest, we are exploiting three basic
components of prosody – fundamental frequency (f0), energy,
and duration. Vowels tend to be the most telling piece of overall
syllable characteristics, because the surrounding consonants are
typically shorter, quieter, and less reflective of subtle spectral
transitions that indicate the presence of syllabic stress. In a word
like “media,” the /ax/ vowel at the end is an entire syllable unto
itself. So, really now, for stress detection the syllable and its
nucleus are interchangeable as areas of acoustic interest.

2.2 Choice of Features

Just what is syllable stress? Other papers on this topic ([3,7,8])
confound the terminology by using “prominence,” “stress,” and
“accent” sometimes interchangeably, but often in referring to
similar and easily confusable phenomena. In [8], an accented
event is defined as one that “exhibits a rise followed by a fall
profile,” presumably in pitch. Whereas a stressed syllable is
linked only to an increase in duration and energy, but not pitch.
Prominence, then, is an all-purpose term encompassing either a
pitch-accented or stressed syllable.

So the “stressed” term used throughout this paper, referring
to a syllable “perceived as standing out from its environment” in
the form of primary lexical emphasis, is closest to [8]’s
definition of “prominence,” since we define it to encompass
prosodic features related to pitch, energy, and duration.
According to [7], “it has been proven that f0 is not a reliable
correlate of stress.” True, it is not nearly as reliable as energy or
duration (at least not in [7]’s study of Dutch and American
English). For instance, in English, a rise in pitch at the end of a
question does not necessarily correspond with syllable or word-
level stress. But for students learning English as a foreign
language, the inclusion of pitch-related features may prove
indispensable to detecting their syllable stress placement,
especially if their native tongue is one like Mandarin, in which
pitch dominates as the feature that dictates both word meaning
and syllabic stress. And as far as choosing one of several
syllables as the location of primary stress within a word (as our
current investigation aims to do), features related to the
fundamental frequency - though perhaps not the simple f0 values
- do significantly improve detection accuracy.

The three basic prosodic features chosen for baseline
experiments were mean values of f0 and energy over the nucleus
(normalized by the respective mean values over the entire word)
and the nucleus duration (normalized by the mean nucleus
duration over all syllables in that word). Normalizing in this
way preserves the word context information and is in keeping
with the fundamental idea that we’re not so much interested in
classifying each syllable separately, but rather we intend to
compare characteristics of all syllables in a word and choose one
as the location of primary stress.

Though we are using the relatively unreliable f0 value as a
feature, we also included several features related to the f0 slope,
which proved to be closely correlated with syllabic stress. The
importance of these slope-derived features is in their potential to
capture higher-level pitch information, to model the rapid rate of
f0 and energy changes that correlate with stress but are in some
sense independent of the mean f0 value. These features are
inspired by the ones used for pronunciation evaluation and
speaker recognition in [9] and [6], respectively. They are:

- the mean f0 slope over the nucleus, divided (which is to say
normalized) by the mean slope over the entire word
- the total number of rising and falling frames in the nucleus,
normalized by the total number of frames in the word
- the number of intra-nucleus changes from rising to falling slope
(or vice versa) between adjacent frames, normalized by the total
frames in the word
- the pitch pseudo-slope (the last value minus the first value)
over the nucleus, divided by the pseudo-slope of the whole word

For reasons similar to those of the slope-derived features,
we also included the following range features:

- f0 range over the nucleus, divided by the f0 range over the
whole word
- energy range over the nucleus, divided by energy range over
the word

Including these slope- and range-related features serves to
make our model of syllabic “stress” a combination of [8]’s close
distinctions between stress and pitch-accent, which we argue is
necessary for language learning purposes.

2.3 Feature Extraction and Processing

As stated above, the syllable nuclei durations were derived from
automatic results of forced alignments based on transcriptions of
each recording’s utterance prompt. The phonemic boundaries
(in milliseconds) the ISLE corpus has presented as text files
grouped into sentence utterances, labeled with expected and
transcribed pronunciations and stress patterns. So it was
possible for us to incorporate higher-level contextual
information to optimize normalization of our syllable duration
feature, which was necessary especially because we used the
syllable nucleus in place of the syllable itself.

[3] presents a list of linguistic rules with which to further
normalize vowel durations based on that vowel’s word- and
phrase-level context. These rules seem to be derived from
empirically calculated average duration trends in pronunciation.
The ones we used are as follows:

I - 938

➡ ➡



- Divide by 2 all vowel durations in prepausal words
- Divide by 1.5 all vowel durations in content words
- Divide by 2 all vowel durations preceding voiced fricatives
- Divide by 1.5 all word-final vowel durations
- Divide by 1.25 all vowel durations preceding a voiced stop
- Divide by 0.5 all vowel durations preceding an unvoiced stop

The above rules apply only for the nuclei of syllables
expected to hold primary stress, which we may assume the
classifier knows from a dictionary. There is one more rule,
though, for the syllables expected to be canonically unstressed:

- Divide by 0.5 all vowels expected to be unstressed

For purposes of comparison, we also kept the original
durations before the contextual rules were applied.

The f0 and RMS energy values were obtained using the
ESPS get_f0 pitch tracking method with the default frame length
of 10 msec and pitch range from 60 to 400 Hz.

As recommended in [10], for all f0-related features we
ignored the last four frames of any word-final prepausal vowel,
so as to avoid the “boundary tones” that denote the end of a
phrase. The mean slope and pseudo-slope features were taken as
absolute values, because the sign might have flipped after
normalization. And we used log-values of all features, so as to
better fit them with Gaussian distributions.

3. EXPERIMENTS AND RESULTS

3.1 A Two-class Problem

We began the classification process by considering this a two-
class problem: though we included the contextual rules listed
above in Section 2.3, we still started by classifying each syllable
individually as stressed or unstressed, without regard for within-
word information (i.e. without considering that every word
should have one and only one syllable of primary stress). This is
because to classify the primary stress of an N syllable word is
really an N-class problem, for which we would have to
separately classify two-syllable words, three-syllable words, etc.,
assuming we don’t build a unique model for every possible
stress pattern of every word! So, to limit classification
complexity, we initially considered only two possible classes and
one generalized classifier.

For training data, we used 13 native Italian speakers (a total
of 7086 syllable nuclei, taken only from polysyllabic words), and
12 native German speakers (7878 syllable nuclei instances), all
taken from the ISLE corpus described above in Section 1.
Classifiers for the Italian and German students were trained and
tested separately, since we may assume the classifier has prior
knowledge of the registered student’s native language. The test
set was comprised of the remaining 10 Italian speakers (6667
nuclei from 2914 polysyllabic words) and the remaining 11
German speakers (7021 nuclei taken from 3065 polysyllabic
words). The ratio of unstressed to stressed vowels in each of the
training and test sets was about 1.29.

The models for stressed and unstressed syllable nuclei were
built in MATLAB as Gaussian mixtures using the PRTools

Toolbox [4]. The classifier chosen was a quadratic Bayes
discriminant function.

3.2 Incorporating Word Information for Post-
Classification

After individually classifying every syllable nucleus as stressed
or unstressed, we sought to improve accuracy by including
information about intra-word stress results. By definition, no
word can have more or less than one syllable of primary stress,
and the ISLE corpus is labeled accordingly. So in the words for
which our two-class classifier assigned more than one primary
stress, we kept the one with the best posterior probability
returned by the classifier, and post-classified the other ones as
unstressed. And in words with no stressed syllable results, we
chose the one unstressed syllable with the worst posterior
probability and post-classified it as stressed. Then, after this
post-classification step, we retested our individual nuclei results,
and also counted how many complete words had had all their
syllables properly tagged (an inter-word accuracy to compare
with the inter-syllable accuracy after the word information had
been applied).

Results using different feature sets are shown in Table 1.
All results listed include the seven contextual rules for
normalizing vowel durations, because without these rules results
were significantly less accurate (by anywhere from 5 to 10%),
and incorporating the word information actually worsened inter-
word accuracy.

The errors were split almost exactly evenly between missed
detections and false alarms.

4. DISCUSSION

From Table 1 we can see that the classifier performed slightly
better overall for the Germans than for the Italians. This might
be due to the fact that the contextual rules for normalizing
durations in [3] were taken from a study in American English,
and German is linguistically more closely related to English than
Italian is. However, testing the German speakers on the Italian-
trained models (and vice-versa) did not result in a significant
decline in accuracy. This seems to indicate that, with more
diverse training data, one should be able to generalize these
models for all English learners, regardless of their native
language (or at least define models in broader linguistic groups).

As we expected, the post-classification done in
incorporating word information always improved accuracy for
individual syllables. But the human experts did not tag each
syllable individually, without regard for other syllables in the
same word. No, they listened to each word separately and
picked one syllable as the location of primary stress. So in the
end, the best measure of our method’s performance is really the
word accuracy ratings – the percentage of words in which all
syllables were classified correctly. Now inter-human agreement
in linguistic labeling is commonly held (by [8,9]) to be about
80%. So, by Table 1, even a few of our sub-optimal feature
selections performed as well as a human labeler would. And our
results using baseline features were comparable with that of
similar features employed in [7,8].

The inter-word accuracy metric (Table 1’s “word” columns)
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Accuracy (%)
Italian German

syllable w/ word info word syllable w/ word info word
3 basic features 75.63 76.51 83.39 80.26 82.00 87.80
ranges 56.74 57.34 64.96 61.96 62.46 69.69
slopes 62.82 66.91 73.10 67.43 69.15 75.60
basic + ranges 78.16 78.31 83.87 82.07 82.25 87.41
basic + slopes 82.48 84.01 87.61 85.49 85.73 89.14
all 10 features 82.57 83.17 86.75 85.57 85.81 88.81

Table 1. Syllable stress detection accuracy for individual syllables with and without word information, and inter-word accuracy based
on the percentage of complete words in which all syllables were post-classified correctly.

always yielded better results than the syllable accuracy with
word info metric. This must be because most of the words
were only two syllables in length, and words with more
syllables are more likely to have their overall stress patterns
classified incorrectly (as the individual syllable classification
error adds up). But, after post-classification, a given word can
have no more (or less) than two syllables classified incorrectly.
When a two-syllable word is incorrect, all (both) syllables will
be misclassified. So shorter words, which comprise the
majority of the corpus, will perform worse for inter-syllable
accuracy, but better for inter-word accuracy.

As far as the features go, the baseline experiments using
only mean f0, mean energy, and duration already yielded a
word accuracy rate of better than 80%. Adding features related
to the f0 slope and the f0 and energy ranges was necessary only
to push the individual syllable accuracy above 80%, in keeping
with the rating convention of [8]. Though the range-related
features did add some improvement over the baseline, the
classifier performed better when only the baseline and slope-
related features were used. But, that’s really just an
improvement in agreement with a human labeler, so any
increase in accuracy beyond 80% is redundant.

As a supplementary experiment, we calculated the
classifier output’s accuracy when compared with the canonical
stress pattern (not the human-tagged stress labels), by way of
generating some kind of crude overall pronunciation score for
each speaker (a true score would include more than just
accuracy of stress placement). We also calculated comparable
objective “human” scores based on the agreement between the
hand-tagged stress data and the canonical stress marks. The
correlation between the automatic scores and the human scores
for the 10 speakers in the Italian test set was 0.7998 for
syllables, 0.8087 for words, which beats the inter-human
correlation in assigning general pronunciation scores to
speakers in this corpus (it was no better than 0.7, as reported in
[1]). This speaks well for our method’s applicability to
pronunciation evaluation.

The native Italian speakers in the ISLE corpus frequently
mispronounced /uh/ with rounded lips as /uw/ [1]. Similarly,
the native German speakers often pronounced their /z/
unvoiced as /s/. So future work along these lines would be
well-served to incorporate articulatory features into the
pronunciation scoring scheme, for automatic detection of
typical pronunciation errors and localization of the exact type
of mistake (manner, voicing, place, rounding, etc.) made in the
misarticulation. It might also be interesting to see how these

features perform in detecting word-level stress within an entire
utterance, though for language-learning purposes syllable-level
stress is far more crucial to effective communication.
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